Murray,
R. M.
,
Li,
Z.
,
Sastry,
S. S.
, and
Sastry,
S. S.
, 1994, A Mathematical Introduction to Robotic Manipulation,
CRC Press, Boca Raton, FL.

Wu,
Y.
,
Löwe,
H.
,
Carricato,
M.
, and
Li,
Z.
, 2016, “
Inversion Symmetry of the Euclidean Group: Theory and Application to Robot Kinematics,” IEEE Trans. Rob.,
32(2), pp. 312–326.

[CrossRef]
Hunt,
K.
, 1973, “
Constant-Velocity Shaft Couplings: A General Theory,” J. Eng. Ind.,
95(2), pp. 455–464.

[CrossRef]
Carricato,
M.
, 2009, “
Decoupled and Homokinetic Transmission of Rotational Motion Via Constant-Velocity Joints in Closed-Chain Orientational Manipulators,” ASME J. Mech. Rob.,
1(4), p. 041008.

[CrossRef]
Wu,
Y.
,
Li,
Z.
, and
Shi,
J.
, 2010, “
Geometric Properties of Zero-Torsion Parallel Kinematics Machines,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Taipei, Taiwan, Oct. 18–22, pp. 2307–2312.

Bonev,
I. A.
, and
Ryu,
J.
, 2001, “
A New Approach to Orientation Workspace Analysis of 6-DOF Parallel Manipulators,” Mech. Mach. Theory,
36(1), pp. 15–28.

[CrossRef]
Bonev,
I.
,
Zlatanov,
D.
, and
Gosselin,
C.
, 2002, “
Advantages of the Modified Euler Angles in the Design and Control of PKMs,” Parallel Kinematic Machines International Conference, Chemnitz, Germany, Apr. 23–25, pp. 171–188.

Rosheim,
M. E.
, and
Sauter,
G. F.
, 2002, “
New High-Angulation Omni-Directional Sensor Mount,” International Symposium on Optical Science and Technology, Seattle, WA, July 7–11, pp. 163–174.

Sone,
K.
,
Isobe,
H.
, and
Yamada,
K.
, 2004, “
High Angle Active Link,” NTN Technical Review,
71, pp. 70–73.

http://www.ntnglobal.com/en/products/review/pdf/NTN_TR71_en_P070.pdf
Kong,
X.
,
Yu,
J.
, and
Li,
D.
, 2016, “
Reconfiguration Analysis of a Two Degrees-of-Freedom 3-4R Parallel Manipulator With Planar Base and Platform,” ASME J. Mech. Rob.,
8(1), p. 011019.

[CrossRef]
Löwe,
H.
,
Wu,
Y.
, and
Carricato,
M.
, 2016, “
Symmetric Subspaces of SE(3),” Adv. Geom.,
16(3), pp. 381–388.

[CrossRef]
Wu,
Y.
, and
Carricato,
M.
, 2017, “
Identification and Geometric Characterization of Lie Triple Screw Systems and Their Exponential Images,” Mech. Mach. Theory,
107, pp. 305–323.

[CrossRef]
Wu,
Y.
,
Müller,
A.
, and
Carricato,
M.
, 2016, “
The 2D Orientation Interpolation Problem: A Symmetric Space Approach,” Advances in Robot Kinematics,
Springer, Cham, Switzerland, pp. 293–302.

[CrossRef]
Wu,
Y.
, and
Carricato,
M.
, 2018, “
Design of a Novel 3-DoF Serial-Parallel Robotic Wrist: A Symmetric Space Approach,” Robotics Research, vol 2, A. Bicchi and W. Burgard, Eds., Springer, Cham, Switzerland, pp. 389–404.

[CrossRef]
Sofka,
J.
,
Skormin,
V.
,
Nikulin,
V.
, and
Nicholson,
D.
, 2006, “
Omni-Wrist III-a New Generation of Pointing Devices—Part I: Laser Beam Steering Devices-Mathematical Modeling,” IEEE Trans. Aerosp. Electron. Syst.,
42(2), pp. 718–725.

[CrossRef]
Yu,
J.
,
Dong,
X.
,
Pei,
X.
, and
Kong,
X.
, 2012, “
Mobility and Singularity Analysis of a Class of Two Degrees of Freedom Rotational Parallel Mechanisms Using a Visual Graphic Approach,” ASME J. Mech. Rob.,
4(4), p. 041006.

[CrossRef]
Wu,
K.
,
Yu,
J.
,
Zong,
G.
, and
Kong,
X.
, 2014, “
A Family of Rotational Parallel Manipulators With Equal-Diameter Spherical Pure Rotation,” ASME J. Mech. Rob.,
6(1), p. 011008.

[CrossRef]
Kong,
X.
, and
Yu,
J.
, 2015, “
Type Synthesis of Two-Degrees-of-Freedom 3-4R Parallel Mechanisms With Both Spherical Translation Mode and Sphere-on-Sphere Rolling Mode,” ASME J. Mech. Rob.,
7(4), p. 041018.

[CrossRef]
Bonev,
I. A.
, and
Gosselin,
C. M.
, 2005, “
Singularity Loci of Spherical Parallel Mechanisms,” IEEE International Conference on Robotics and Automation (ICRA), Barcelona, Spain, Apr. 18–22, pp. 2957–2962.

Briot,
S.
, and
Bonev,
I. A.
, 2008, “
Singularity Analysis of Zero-Torsion Parallel Mechanisms,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Nice, France, Sept. 22–26, pp. 1952–1957.

Ben-Horin,
P.
, and
Shoham,
M.
, 2009, “
Application of Grassmann–Cayley Algebra to Geometrical Interpretation of Parallel Robot Singularities,” Int. J. Rob. Res.,
28(1), pp. 127–141.

[CrossRef]
Kanaan,
D.
,
Wenger,
P.
,
Caro,
S.
, and
Chablat,
D.
, 2009, “
Singularity Analysis of Lower Mobility Parallel Manipulators Using Grassmann–Cayley Algebra,” IEEE Trans. Rob.,
25(5), pp. 995–1004.

[CrossRef]
Hunt,
K. H.
, 1978, Kinematic Geometry of Mechanisms,
Oxford University Press, New York.

Meng,
J.
,
Liu,
G.
, and
Li,
Z.
, 2007, “
A Geometric Theory for Analysis and Synthesis of Sub-6 DOF Parallel Manipulators,” IEEE Trans. Rob.,
23(4), pp. 625–649.

[CrossRef]
Selig,
J.
, 2018, “
Some Mobile Overconstrained Parallel Mechanisms,” *Advances in Robot Kinematics*, Springer, Cham, Switzerland, pp. 139–147.

Conconi,
M.
, and
Carricato,
M.
, 2009, “
A New Assessment of Singularities of Parallel Kinematic Chains,” IEEE Trans. Rob.,
25(4), pp. 757–770.

[CrossRef]
Wu,
Y.
, and
Carricato,
M.
, 2017, “
Optimal Design of N-
U
U Parallel Mechanisms,” Computational Kinematics, Springer, Cham, Switzerland, pp. 394–402.

Bonev,
I. A.
, and
Gosselin,
C. M.
, 2001, “
Singularity Loci of Planar Parallel Manipulators With Revolute Joints,” Second Workshop on Computational Kinematics, Seoul, South Korea, May 20–22, pp. 20–22.

http://etsmtl.ca/Professeurs/ibonev/documents/pdf/CK2001.pdf
Merlet,
J.-P.
, 2012, Parallel Robots,
Springer Science & Business Media, Dordrecht, The Netherlands.

Voglewede,
P. A.
, and
Ebert-Uphoff,
I.
, 2005, “
Overarching Framework for Measuring Closeness to Singularities of Parallel Manipulators,” IEEE Trans. Rob.,
21(6), pp. 1037–1045.

[CrossRef]
Pottmann,
H.
,
Peternell,
M.
, and
Ravani,
B.
, 1999, “
An Introduction to Line Geometry With Applications,” Comput.-Aided Des.,
31(1), pp. 3–16.

[CrossRef]