Hawks, J. A.
,
Kunowski, J.
, and
Platt, S. R.
, 2012, “In Vivo Demonstration of Surgical Task Assistance Using Miniature Robots,” IEEE Trans. Biomed. Eng., 59(10), pp. 2866–2873.
[CrossRef] [PubMed]
Hu, J. C.
,
Gu, X.
,
Lipsitz, S. R.
,
Barry, M. J.
,
D'Amico, A. V.
,
Weinberg, A. C.
, and
Keating, N. L.
, 2009, “Comparative Effectiveness of Minimally Invasive vs Open Radical Prostatectomy,” JAMA, 302(14), pp. 1557–1564.
[CrossRef] [PubMed]
Verhage, R.
,
Hazebroek, E.
,
Boone, J.
, and
Van Hillegersberg, R.
, 2009, “Minimally Invasive Surgery Compared to Open Procedures in Esophagectomy for Cancer: A Systematic Review of the Literature,” Minerva Chir., 64(2), pp.
135–146.
[PubMed]
Nisar, S.
, and
Hasan, O.
, 2015, “Telesurgical Robotics,” Encyclopedia of Information Science and Technology, GI Global, Hershey, PA, pp. 5482–5490.
Tinelli, R.
,
Litta, P.
,
Meir, Y.
,
Surico, D.
,
Leo, L.
,
Fusco, A.
,
Angioni, S.
, and
Cicinelli, E.
, 2014, “Advantages of Laparoscopy Versus Laparotomy in Extremely Obese Women (BMI > 35) With Early-Stage Endometrial Cancer: A Multicenter Study,” Anticancer Res., 34(5), pp. 2497–2502.
[PubMed]
Peters, J. H.
,
Gibbons, G.
,
Innes, J.
,
Nichols, K.
,
Roby, S.
, and
Ellison, E.
, 1991, “Complications of Laparoscopic Cholecystectomy,” Surgery, 110(4), pp.
769–777.
[PubMed]
Yau, K. K.
,
Siu, W. T.
,
Tang, C. N.
,
Yang, G. P. C.
, and
Li, M. K. W.
, 2007, “Laparoscopic Versus Open Appendectomy for Complicated Appendicitis,” J. Am. Coll. Surg., 205(1), pp. 60–65.
[CrossRef] [PubMed]
Berguer, R.
,
Smith, W.
, and
Chung, Y.
, 2001, “Performing Laparoscopic Surgery Is Significantly More Stressful for the Surgeon Than Open Surgery,” Surg. Endoscopy, 15(10), pp. 1204–1207.
[CrossRef]
Vitiello, V.
,
Lee, S.
,
Cundy, T. P.
, and
Yang, G. Z.
, 2013, “Emerging Robotic Platforms for Minimally Invasive Surgery,” IEEE Rev. Biomed. Eng., 6, pp. 111–126.
[CrossRef] [PubMed]
Basdogan, C.
,
De, S.
,
Kim, J.
,
Muniyandi, M.
,
Kim, H.
, and
Srinivasan, M.
, 2004, “Haptics in Minimally Invasive Surgical Simulation and Training,” IEEE Comput. Graphics Appl., 24(2), pp. 56–64.
[CrossRef]
Dankelman, J.
, 2004, “Surgical Robots and Other Training Tools in Minimally Invasive Surgery,” IEEE International Conference on Systems, Man and Cybernetics (SMC), Hague, The Netherlands, Oct. 10–13, Vol. 3, pp. 2459–2464.
Kuo, C. H.
, and
Dai, J. S.
, 2009, “Robotics for Minimally Invasive Surgery: A Historical Review From the Perspective of Kinematics,” International Symposium on History of Machines and Mechanisms, Springer Science & Business Media, Dordrecht, The Netherlands, pp. 337–354.
Dakin, G.
, and
Gagner, M.
, 2003, “Comparison of Laparoscopic Skills Performance Between Standard Instruments and Two Surgical Robotic Systems,” Surg. Endoscopy Other Interventional Tech., 17(4), pp. 574–579.
[CrossRef]
Hassan, T.
,
Hameed, A.
,
Nisar, S.
,
Kamal, N.
, and
Hasan, O.
, 2014, “Al-Zahrawi: A Telesurgical Robotic System for Minimal Invasive Surgery,” IEEE Syst. J., 10(99), pp. 1–11.
Madhani, A. J.
, and
Salisbury, J. K.
, 1998, “
Force-Reflecting Surgical Instrument and Positioning Mechanism for Performing Minimally Invasive Surgery With Enhanced Dexterity and Sensitivity,” U.S. Patent No. 5,807,377.
van den Bedem, L.
, 2010, “Realization of a Demonstrator Slave for Robotic Minimally Invasive Surgery,” Ph.D. thesis, Department of Mechanical Engineering, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.
Hannaford, B.
,
Rosen, J.
,
Friedman, D. W.
,
King, H.
,
Roan, P.
,
Cheng, L.
,
Glozman, D.
,
Ma, J.
,
Kosari, S. N.
, and
White, L.
, 2013, “Raven-II: An Open Platform for Surgical Robotics Research,” IEEE Trans. Biomed. Eng., 60(4), pp. 954–959.
[CrossRef] [PubMed]
Sung, G. T.
, and
Gill, I. S.
, 2001, “Robotic Laparoscopic Surgery: A Comparison of the da Vinci and Zeus Systems,” Urology, 58(6), pp. 893–898.
[CrossRef] [PubMed]
Zong, G.
,
Pei, X.
,
Yu, J.
, and
Bi, S.
, 2008, “Classification and Type Synthesis of 1-DOF Remote Center of Motion Mechanisms,” Mech. Mach. Theory, 43(12), pp. 1585–1595.
[CrossRef]
Aksungur, S.
, 2015, “Remote Center of Motion (RCM) Mechanisms for Surgical Operations,” Int. J. Appl. Math., Electron. Comput., 3(2), pp. 119–126.
[CrossRef]
Hamlin, G.
, and
Sanderson, A.
, 1994, “A Novel Concentric Multilink Spherical Joint With Parallel Robotics Applications,” IEEE International Conference on Robotics and Automation (ICRA), San Diego, CA, May 8–13, Vol. 2, pp. 1267–1272.
Taylor, R.
,
Funda, J.
,
Eldridge, B.
,
Gomory, S.
,
Gruben, K.
,
LaRose, D.
,
Talamini, M.
,
Kavoussi, L.
, and
Anderson, J.
, 1995, “A Telerobotic Assistant for Laparoscopic Surgery,” IEEE Eng. Med. Biol. Mag., 14(3), pp. 279–288.
[CrossRef]
Taylor, R.
,
Funda, J.
,
Grossman, D.
,
Karidis, J.
, and
LaRose, D.
, 1995, “Remote Center-of-Motion Robot for Surgery,” U.S. Patent No. 5,397,323.
Rosen, J.
,
Brown, J.
,
Chang, L.
,
Barreca, M.
,
Sinanan, M.
, and
Hannaford, B.
, 2002, “The Bluedragon—A System for Measuring the Kinematics and Dynamics of Minimally Invasive Surgical Tools In-Vivo,” IEEE International Conference on Robotics and Automation (ICRA), Washington, DC, May 11–15, Vol. 2, pp. 1876–1881.
Lum, M.
,
Rosen, J.
,
Sinanan, M.
, and
Hannaford, B.
, 2006, “Optimization of a Spherical Mechanism for a Minimally Invasive Surgical Robot: Theoretical and Experimental Approaches,” IEEE Trans. Biomed. Eng., 53(7), pp. 1440–1445.
[CrossRef] [PubMed]
Gijbels, A.
,
Wouters, N.
,
Stalmans, P.
,
Van Brussel, H.
,
Reynaerts, D.
, and
Poorten, E. V.
, 2013, “Design and Realisation of a Novel Robotic Manipulator for Retinal Surgery,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, Nov. 3–7, pp. 3598–3603.
Devengenzo, R.
,
Solomon, T.
, and
Cooper, T.
, 2015, “Cable Tensioning in a Robotic Surgical System,” U.S. Patent No. 9,050,119.
Li, J.
,
Zhang, G.
,
Xing, Y.
,
Liu, H.
, and
Wang, S.
, 2014, “A Class of 2-Degree-of-Freedom Planar Remote Center-of-Motion Mechanisms Based on Virtual Parallelograms,” ASME J. Mech. Rob., 6(3), p. 031014.
[CrossRef]
Kong, K.
,
Li, J.
,
Zhang, H.
,
Li, J.
, and
Wang, S.
, 2016, “Kinematic Design of a Generalized Double Parallelogram Based RCM Mechanism for Minimally Invasive Surgical Robot,” ASME J. Med. Devices, 10(4), p.
041006.
[CrossRef]
Yoshikawa, T.
, 1985, “Manipulability of Robotic Mechanisms,” Int. J. Rob. Res., 4(2), pp. 3–9.
[CrossRef]