Luh,
J. Y. S.
,
Walker,
M. W.
, and
Paul,
R. C. P.
, 1980, “
On-Line Computational Scheme for Mechanical Manipulators,” ASME J. Dyn. Syst., Meas., Control,
102(2), pp. 69–76.

[CrossRef]
Featherstone,
R.
, 1983, “
The Calculation of Robot Dynamics Using Articulated-Body Inertias,” Int. J. Rob. Res.,
2(3), pp. 87–101.

Featherstone,
R.
, 2008, Rigid Body Dynamics Algorithms,
Springer,
New York.

Jain,
A.
, and
Rodriguez,
G.
, 1992, “
Recursive Flexible Multibody System Dynamics Using Spatial Operators,” J. Guid. Control Dyn.,
15(6), pp. 1453–1466.

[CrossRef]
Boyer,
F.
, and
Khalil,
W.
, 1998, “
An Efficient Calculation of Flexible Manipulator Inverse Dynamics,” Int. J. Rob. Res.,
17(3), pp. 282–293.

[CrossRef]
Hughes,
P. C.
, and
Sincarsin,
G. B.
, 1989, “
Dynamics of Elastic Multibody Chains: Part B-Global Dynamics,” Dyn. Stab. Syst.,
4(3–4), pp. 227–243.

Sharf,
I.
, and
D’Eleuterio,
G. M. T.
, 1992, “
Parallel Simulation Dynamics for Elastic Multibody Chains,” IEEE Trans. Rob. Autom.,
8(5), pp. 597–606.

[CrossRef]
Anderson,
K. S.
, 1990, “
Recursive Derivation of Explicit Equations of Motion for Efficient Dynamic/Control Simulation of Large Multibody Systems,” Ph.D. thesis, Stanford University, Stanford, CA.

Khalil,
W.
, and
Kleinfinger,
J.-F.
, 1986, “
A New Geometric Notation for Open and Closed-Loop Robots,” IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, Apr. 7–10, pp. 1174–1180.

Verl,
A.
,
Albu-Schaeffer,
A.
, and
Brock,
O.
, eds., 2015, Soft Robotics: Transferring Theory to Application,
Springer,
New York.

Roberts,
T. J.
, and
Azizi,
E.
, 2011, “
Flexible Mechanisms: The Diverse Roles of Biological Springs in Vertebrate Movement,” J. Exp. Biol.,
214(3), pp. 353–361.

[CrossRef] [PubMed]
Pfeifer,
R.
,
Lungarella,
M.
, and
Iida,
F.
, 2007, “
Self-Organization, Embodiment, and Biologically Inspired Robotics,” Science,
318(5853), pp. 1088–1093.

[CrossRef] [PubMed]
Khosla,
P. K.
, 1986, “
Real-Time Control and Identification of Direct-Drive Manipulators,” Ph.D. thesis, Carnegie Mellon, Pittsburgh, PA.

Khalil,
W.
, and
Kleinfinger,
J.-F.
, 1987, “
Minimum Operations and Minimum Parameters of the Dynamic Model of Tree Structure Robots,” IEEE J. Rob. Autom.,
3(6), pp. 517–526.

[CrossRef]
Khalil,
W.
, and
Dombre,
E.
, 2002, Modeling Identification and Control of Robots,
Hermes, Penton-Sciences,
London.

Canavin,
J.
, and
Likins,
P.
, 1977, “
Floating Reference Frames for Flexible Spacecraft,” J. Spacecr. Rockets,
14(12), pp. 724–732.

[CrossRef]
Bae,
D. S.
, et al. , 2001, “
A Generalized Recursive Formulation for Constrained Flexible Multibody Dynamics,” Int. J. Numer. Methods Eng.,
50(8), pp. 1841–1859.

[CrossRef]
Meirovitch,
L.
, 1989, Dynamics and Control of Structures,
Wiley,
New York.

Craig,
J. J.
, 1986, Introduction to Robotics: Mechanics and Control,
Addison Wesley Publishing Company,
Reading, UK.

Angeles,
J.
, 2002, Fundamentals of Robotic Mechanical Systems, 2nd ed.,
Springer-Verlag,
New York.

Jain,
A.
, 2011, Robot and Multibody Dynamics: Analysis and Algorithms,
Springer-Verlag,
Berlin.

Walker,
M. W.
, and
Orin,
D. E.
, 1982, “
Efficient Dynamic Computer Simulation of Robotics Mechanism,” ASME J. Dyn. Syst., Meas., Control,
104(3), pp. 205–211.

[CrossRef]
Rodriguez,
G.
,
Kreutz,
K.
, and
Jain,
A.
, 1991, “
A Spatial Operator Algebra for Manipulator Modeling and Control,” Int. J. Rob. Res.,
10(4), pp. 371–381.

[CrossRef]
Featherstone,
R.
, 1999, “
A Divide-and-Conquer Articulated Body Algorithm for Parallel O(log(n)) Calculation of Rigid Body Dynamics—Part 1: Basic Algorithm,” Int. J. Rob. Res.,
18(9), pp. 867–875.

[CrossRef]
Featherstone,
R.
, 1999, “
A Divide-and-Conquer Articulated Body Algorithm for Parallel O(log(n)) Calculation of Rigid Body Dynamics—Part 2: Trees, Loops and Accuracy,” Int. J. Rob. Res.,
18(9), pp. 876–892.

[CrossRef]
Mukherjee,
R.
, and
Anderson,
K. S.
, 2007, “
A Logarithm Complexity Divide-and-Conquer Algorithm for Multiflexible Articulated Body Systems,” Comput. Nonlinear Dyn.,
2(1), pp. 10–21.

[CrossRef]
Mukherjee,
R.
, and
Anderson,
K. S.
, 2007, “
An Orthogonal Complement Based Divide-and-Conquer Algorithm for Constrained Multibody Systems,” Comput. Nonlinear Dyn.,
48(1–2), pp. 199–215.

[CrossRef]
Vereshchagin,
A. F.
, 1974, “
Computer Simulation of the Dynamics of Complicated Mechanisms of Robot-Manipulators,” Eng. Cybern.,
6, pp. 65–70.

Armstrong,
W. W.
, 1979, “
Recursive Solution to the Equations of Motiob of an n-Link Manipulator,” Fifth World Congress on the Theory of Machines and Mechanisms (IFToMM), Montreal, Canada, July 8–13, Vol.
2, pp. 1342–2346.

Brand, I
. H.
,
Johani,
R.
, and
Otter,
M.
, 1986, “
A Very Efficient Algorithm for the Simulation of Robots and Similar Multibody Systems Without Inversion of the Mass Matrix,” IFAC/IFIP/IMACS International Symposium on Theory of Robots, Vienna, Austria, pp. 95–100.

Bae,
D. S.
, and
Haug,
E. J.
, 1987, “
A Recursive Formulation for Constrained Mechanical Systems—Part I: Open Loop Systems,” Mech. Struct. Mach.,
15(3), pp. 359–382.

[CrossRef]
Rosenthal,
D.
, 1987, “
Order n Formulation for Equations of Motions of Multibody Systems,” SDIO NASA Workshop on Multibody Simulation, Jet Propulsion Laboratory, Arcadia, CA, pp. 1122–1150.

Jain,
A.
, 1991, “
A Unified Formulation of Dynamics for Serial Rigid Multibody Systems,” J. Guid. Control Dyn.,
14(3), pp. 531–542.

[CrossRef]
Stelzle,
W.
,
Kecskemethy,
A.
, and
Hiller,
M.
, 1995, “
A Comparative Study of Recursive Methods,” Arch. Study Recursive Methods,
66(1), pp. 9–19.

Featherstone,
R.
, and
Orin,
D. E.
, 2008, “
Dynamics,” Springer Handbook of Robotics,
B. Siciliano
and
O. Khatib
, eds.,
Springer-Verlag,
Berlin, pp. 37–63.

Khalil,
W.
, and
Creusot,
D.
, 1997, “
SYMORO+: A System for the Symbolic Modelling of Robots,” Robotica,
15(2), pp. 153–161.

[CrossRef]
Jain,
A.
, and
Rodriguez,
G.
, 1993, “
Recursive Dynamics Algorithm for Multibody Systems With Prescribed Motion,” J. Guid., Control Dyn.,
16(4), pp. 830–837.

[CrossRef]
Albu-Schaffer,
A.
, 2008, “
From Torque Feedback-Controlled Lightweight Robots to Intrinsically Compliant Systems,” IEEE Robotics and Automation Magazine, pp. 20–30.

Spong,
M.
, 1987, “
Modelling and Control of Elastic Joint Robots,” ASME J. Dyn. Syst., Meas., Control,
109(4), pp. 310–319.

[CrossRef]
Khalil,
W.
, and
Gautier,
M.
, 2000, “
Modeling of Mechanical Systems With Lumped Elasticity,” IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, Apr. 24–28, pp. 3964–3969.

Feron,
E.
, and
Johnson,
E.
, 2008, “
Aerial Robots,” Springer Handbook of Robotics,
B. Siciliano
and
O. Khatib
, eds.,
Springer-Verlag,
Berlin, Chap. 44.

Khalil,
W.
, and
Rongère,
F.
, 2014, “
Dynamic Modeling of Floating Systems: Application to Eel-Like Robot and Rowing System,” 13th IEEE International Workshop on Advanced Motion Control (AMC), Yokohama, Japan, Mar. 14–16, pp. 12–14.

McIsaac,
K. A.
, and
Ostrowski,
J. P.
, 1999, “
A Geometric Approach to Anguilliform Locomotion Modelling of an Underwater Eel Robot,” IEEE International Conference on Robotics and Automation (ICRA), Detroit, MI, May 10–15, pp. 2843–2848.

Ostrowski,
J. P.
, and
Burdick,
J. W.
, 1998, “
The Geometric Mechanics of Undulatory Robotics Locomotion,” Int. J. Rob. Res.,
17(7), pp. 683–701.

[CrossRef]
Chevallereau,
C.
,
Bessonnet,
G.
,
Abba,
G.
, and
Aoustin,
Y.
, 2009, Bipedal Robots (
CAM Control Systems,
Robotics and Manufacturing Series),
ISTE
London.

Mukherjee,
R.
, and
Nukamura,
Y.
, 1992, “
Formulation and Efficient Computation of Inverse Dynamics of Space Robots,” IEEE Trans. Rob. Autom.,
8(3), pp. 400–406.

[CrossRef]
Jain,
A.
, and
Rodriguez,
G.
, 1995, “
Base-Invariant Symmetric Dynamics of Free-Flying Manipulators,” IEEE Trans. Rob. Autom.,
11(4), pp. 585–597.

[CrossRef]
Khalil,
W.
, 2010, “
Dynamic Modeling of Robots Using Newton-Euler Formulation,” Informatics in Control, Automation and Robotics (Lecture Notes in Electrical Engineering), Vol.
89,
J. A. Cetto
,
J.-L. Ferrier
, and
J. Filipe
, eds.,
Springer,
Berlin, pp. 3–20.

Boyer,
F.
,
Porez,
M.
, and
Khalil,
W.
, 2006, “
Macro-Continuous Torque Algorithm for a Three-Dimensional Eel-Like Robot,” IEEE Rob. Trans.,
22(4), pp. 763–775.

[CrossRef]
Boyer,
F.
,
Shaukat,
A.
, and
Porez,
M.
, 2012, “
Macrocontinuous Dynamics for Hyperredundant Robots: Application to Kinematic Locomotion Bioinspired by Elongated Body Animals,” IEEE Trans. Rob.,
28(2), pp. 303–317.

[CrossRef]
Boyer,
F.
, and
Porez,
M.
, 2015, “
Multibody System Dynamics for Bio-Inspired Locomotion: From Geometric Structures to Computational Aspects,” Bioinspiration Biomimetics,
10(2), p. 025007.

[CrossRef] [PubMed]
Khalil,
W.
,
Vijayalingam,
A.
,
Khomutenko,
B.
,
Mukhanov,
I.
,
Lemoine,
P.
, and
Ecorchard,
G.
, 2014, “
OpenSYMORO: An Open-Source Software Package for Symbolic Modelling of Robots,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Besancon, France, July, pp. 1206–1211.

De Luca,
A.
, and
Siciliano,
B.
, 1991, “
Recursive Lagrangian Dynamics of Flexible Manipulator Arms,” IEEE Trans. Syst., Man Cybern.,
21(4), pp. 826–839.

[CrossRef]
Damaren,
C.
, and
Sharf,
I.
, 1995, “
Simulation of Flexible-Link Manipulators With Inertial and Geometric Nonlinearities,” ASME J. Dyn. Syst., Meas., Control,
117(1), pp. 74–87.

[CrossRef]
Porez,
M.
,
Boyer,
F.
, and
Belkhiri,
A.
, 2014, “
A Hybrid Dynamic Model for Bio-Inspired Soft Robots: Application to a Flapping-Wing Micro Air Vehicle,” International Conference on Robotics and Automation (ICRA), Hong Kong, China, May 31–June 7, pp. 3556–3563.

Boyer,
F.
, and
Coiffet,
P.
, 1996, “
Generalization of Newton-Euler Model for Flexible Manipulators,” J. Rob. Syst.,
13(1), pp. 11–24.

[CrossRef]
Boyer,
F.
,
Glandais,
N.
, and
Khalil,
W.
, 2002, “
Flexible Multibody Dynamics Based on a Non-Linear Euler-Bernoulli Kinematics,” Int. J. Numer. Methods Eng.,
54(1), pp. 27–59.

[CrossRef]
Sane,
S. P.
, and
Dickinson,
M. H.
, 2002, “
The Aerodynamic Effects of Wing Rotation and a Revised Quasi-Steady Model of Flapping Flight,” J. Exp. Biol.,
205, pp. 1087–1096.

[PubMed]
Boyer,
F.
,
Porez,
M.
,
Ferhat,
M.
, and
Morel,
Y.
, 2016, “
Locomotion Dynamics for Bio-Inspired Robots With Soft Appendages: Application to Flapping Flight and Passive Swimming,” J. Nonlinear Sci., (epub).

Khalil,
W.
,
Gallot,
G.
, and
Boyer,
F.
, 2007, “
Dynamic Modeling and Simulation of a 3-D Serial Eel-Like Robot,” IEEE Trans. Syst., Man Cybern., Part C,
37(6), pp. 1259–1268.

[CrossRef]
Porez,
M.
,
Boyer,
F.
, and
Ijspeert,
A. J.
, 2014, “
Improved Lighthill Fish Swimming Model for Bio-Inspired Robots: Modeling, Computational Aspects and Experimental Comparisons,” Int. J. Rob. Res.,
33(10), pp. 1322–1341.

[CrossRef]