Kuo,
C. H.
,
Dai,
J. S.
, and
Yan,
H. S.
, 2009, “
Reconfiguration Principles and Strategies for Reconfigurable Mechanisms,” ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots, (ReMAR 2009), London, June 22–24, pp. 1–7.

Wohlhart,
K.
, 1996, “*Kinematotropic Linkages*,” *Recent Advances in Robot Kinematics*,
J. Lenarčič
and
V. Parent-Castelli
, eds.,
Springer, Dordrecht,
The Netherlands, pp. 359–368.

Galletti,
C.
, and
Fanghella,
P.
, 2001, “
Single-Loop Kinematotropic Mechanisms,” Mech. Mach. Theory,
36(3), pp. 743–761.

[CrossRef]
Zeng,
Q.
,
Ehmann,
K. F.
, and
Cao,
J.
, 2016, “
Design of General Kinematotropic Mechanisms,” Rob. Comput. Integr. Manuf.,
38, pp. 67–81.

[CrossRef]
Kong,
X.
, 2014, “
Reconfiguration Analysis of a 3-DOF Parallel Mechanism Using Euler Parameter Quaternions and Algebraic Geometry Method,” Mech. Mach. Theory,
74, pp. 188–201.

[CrossRef]
Kong,
X.
, 2012, “
Type Synthesis of Variable Degrees-of-Freedom Parallel Manipulators With Both Planar and 3T1R Operation Modes,” ASME Paper No. DETC2012-70621.

Zlatanov,
D.
,
Bonev,
I.
, and
Gosselin,
C.
, 2002, “
Constraint Singularities as Configuration Space Singularities,” Advances in Robot Kinematics,
J. Lenarčič
and
F. Thomas
, eds.,
Springer, Dordrecht,
The Netherlands, pp. 183–192.

Dai,
J.
, and
Jones,
J. R.
, 1999, “
Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds,” ASME J. Mech. Des.,
121(3), pp. 375–382.

[CrossRef]
Lu,
S.
,
Zlatanov,
D.
,
Ding,
X.
,
Zoppi,
M.
, and
Guest,
S. D.
, 2016, “
Reconfigurable Chains of Bifurcating Type III Bricard Linkages,” Advances in Reconfigurable Mechanisms and Robots II,
X. Ding
,
X. Kong
, and
J. S. Dai
, eds.,
Springer International Publishing, Cham, Switzerland, pp. 3–14.

Ye,
W.
,
Fang,
Y.
,
Zhang,
K.
, and
Guo,
S.
, 2014, “
A New Family of Reconfigurable Parallel Mechanisms With Diamond Kinematotropic Chain,” Mech. Mach. Theory,
74, pp. 1–9.

[CrossRef]
Zhang,
K.
, and
Dai,
J. S.
, 2016, “
Geometric Constraints and Motion Branch Variations for Reconfiguration of Single-Loop Linkages With Mobility One,” Mech. Mach. Theory,
106, pp. 16–29.

[CrossRef]
Kong,
X.
, and
Jin,
Y.
, 2016, “
Type Synthesis of 3-DOF Multi-Mode Translational/Spherical Parallel Mechanisms With Lockable Joints,” Mech. Mach. Theory,
96(Pt. 2), pp. 323–333.

[CrossRef]
López-Custodio,
P.
,
Rico,
J.
,
Cervantes-Sánchez,
J.
, and
Pérez-Soto,
G.
, 2016, “
Reconfigurable Mechanisms From the Intersection of Surfaces,” ASME J. Mech. Rob.,
8(2), p. 021029.

[CrossRef]
Torfason,
L.
, and
Crossley,
F.
, 1971, “
Use of the Intersection of Surfaces as a Method for Design of Spatial Mechanisms,” 3rd World Congress for the Theory of Machines and Mechanisms, Vol. B, Kupari, Yugoslavia, pp. 247–258.

Torfason,
L.
, and
Sharma,
A.
, 1973, “
Analysis of Spatial RRGRR Mechanisms by the Method of Generated Surfaces,” ASME J. Eng. Ind.,
95(3), pp. 704–708.

[CrossRef]
Shrivastava,
A.
, and
Hunt,
K.
, 1973, “
Dwell Motion From Spatial Linkages,” ASME J. Eng. Ind.,
95(2), pp. 511–518.

[CrossRef]
Lee,
C.
, and
Hervé,
J.
, 2012, “
A Discontinuously Movable Constant Velocity Shaft Coupling of Koenigs Joint Type,” Advances in Reconfigurable Mechanisms and Robots I,
M. Z. J. S. Dai
and
X. Kong
, eds., Springer-Verlag, London, pp. 35–43.

Cui,
L.
, and
Dai,
J.
, 2011, “
Axis Constraint Analysis and Its Resultant 6r Double-Centered Overconstrained Mechanisms,” ASME J. Mech. Rob.,
3(3), p. 031004.

[CrossRef]
Levin,
J.
, 1976, “
A Parametric Algorithm for Drawing Pictures of Solid Objects Composed of Quadric Surfaces,” Commun. ACM,
19(10), pp. 555–563.

[CrossRef]
Levin,
J.
, 1979, “
Mathematical Models for Determining the Intersection of Quadric Surfaces,” Comput. Graphics Image Process.,
11(1), pp. 73–87.

[CrossRef]
Whitney,
H.
, 1965, “
Tangents to an Analytic Variety,” Ann. Math.,
81(3), pp. 496–549.

[CrossRef]
Müller,
A.
, 1998, “
Generic Mobility of Rigid Body Mechanisms,” Mech. Mach. Theory,
44(6), pp. 1240–1255.

[CrossRef]
Müller,
A.
, 2015, “
Representation of the Kinematic Topology of Mechanisms for Kinematic Analysis,” Mech. Mach. Theory,
6, pp. 137–146.

Müller,
A.
, 2016, “
Local Kinematic Analysis of Closed-Loop Linkages Mobility, Singularities, and Shakiness,” ASME J. Mech. Rob.,
8(4), p. 041013.

[CrossRef]
Krivoshapko,
S.
, and
Ivanov,
V.
, 2015, Encyclopedia of Analytical Surfaces,
Springer, Cham,
Switzerland.

Rico,
J.
, and
Ravani,
B.
, 2003, “
On Mobility Analysis of Linkages Using Group Theory,” ASME J. Mech. Des.,
125(1), pp. 70–80.

[CrossRef]
Hervé,
J.
, 1978, “
Analyse Structurelle des Mécanismes par Groupe des Déplacements,” Mech. Mach. Theory,
13(4), pp. 437–450.

[CrossRef]
Crane,
C.
, and
Duffy,
J.
, 1998, Kinematic Analysis of Robot Manipulators,
Cambridge University Press,
Cambridge, UK.

Waldron,
K.
, 1967, “
A Family of Overconstrained Linkages,” J. Mech.,
2(2), pp. 201–211.

[CrossRef]
Lee,
C.
, and
Hervé,
J.
, 2010, “
Mechanical Generators of 2-DoF Translation Along a Ruled Surface,” Advances in Robot Kinematics,
J. Lenarčič
and
M. Stanisic
, eds.,
Springer, Dordrecht,
The Netherlands, pp. 73–80.

Su,
H.
, and
McCarthy,
J.
, 2005, “
Dimensioning a Constrained Parallel Robot to Reach a Set of Task Positions,” IEEE International Conference on Robotics and Automation, Barcelona, Spain, Apr. 18–22, pp. 4026–4030.

Liu,
Y.
, and
Zsombor-Murray,
P.
, 1995, “
Intersection Curves Between Quadric Surfaces of Revolution,” Trans. Can. Soc. Mech. Eng.,
19(4), pp. 435–453.

Demazure,
M.
, 2000, Bifurcations and Catastrophes,
Springer-Verlag,
Berlin.

Lerbet,
J.
, 1998, “
Analytic Geometry and Singularities of Mechanisms,” Z. Angew. Math. Mech.,
78(10), pp. 687–694.

[CrossRef]
Müller,
A.
, 2002, “
Local Analysis of Singular Configuration of Open and Closed Loop Manipulators,” Multibody Syst. Dyn.,
8(3), pp. 297–326.

[CrossRef]
Müller,
A.
, 2014, “
Higher Derivatives of the Kinematic Mapping and Some Applications,” Mech. Mach. Theory,
76, pp. 70–85.

[CrossRef]
Diez-Martínez,
C.
,
Rico,
J.
, and
Cervantes-Sánchez,
J.
, 2006, “
Mobility and Connectivity in Multiloop Linkages,” Advances in Robot Kinematics,
J. Lenarčič
and
B. Roth
, eds.,
Springer, Dordrecht,
The Netherlands, pp. 455–464.

López-Custodio,
P.
,
Rico,
J.
,
Cervantes-Sánchez,
J.
,
Pérez-Soto,
G.
, and
Díez-Martínez,
C.
, 2017, “
Verification of the Higher Order Kinematic Analyses Equations,” Eur. J. Mech. - A/Solids,
61, pp. 198–215.

[CrossRef]
Rico,
J.
,
Gallardo,
J.
, and
Duffy,
J.
, 1999, “
Screw Theory and the Higher Order Kinematic Analysis of Serial and Closed Chains,” Mech. Mach. Theory,
34(4), pp. 559–586.

[CrossRef]
López-Custodio,
P.
, 2012, “
Análisis Cinemáticos de Orden Superior y Movilidad de Cadenas Cinemáticas,” B.Sc. thesis, Universidad de Guanajuato, Salamanca, Gto. Mexico.

Müller,
A.
, 2016, “
Recursive Higher-Order Constraints for Linkages With Lower Kinematic Pairs,” Mech. Mach. Theory,
100, pp. 33–43.

[CrossRef]
Kreyszig,
E.
, 1959, Differential Geometry,
University of Toronto Press,
Toronto, ON, Canada.

Ye,
X.
, and
Maekawa,
T.
, 1999, “
Differential Geometry of Intersection Curves of Two Surfaces,” Comput. Aided Geometric Des.,
16(8), pp. 767–788.

[CrossRef]
Barnhill,
R.
, and
Kersey,
S.
, 1990, “
A Marching Method for Parametric Surface/Surface Intersection,” Comput. Aided Geometric Des.,
7(1), pp. 257–280.

[CrossRef]
Pérez-Soto,
G.
, and
Tadeo,
A.
, 2006, “
Síntesis de Número de Cadenas Cinemáticas, un Nuevo Enfoque y Nuevas Herramientas Matemáticas,” M.Sc. thesis, Universidad de Guanajuato, Salamanca, Gto. Mexico.

Lee,
C.
, and
Hervé,
J.
, 2016, “
Various Types of RC//-Like Linkages and the Discontinuously Movable Koenigs Joint,” Mech. Mach. Theory,
96(Pt. 2), pp. 255–268.

[CrossRef]
Tadeo-Chávez,
A.
,
Rico,
J.
,
Cervantes-Sánchez,
J.
,
Pérez-Soto,
G.
, and
Müller,
A.
, 2011, “
Screw Systems Generated by Subalgebras: A Further Analysis,” ASME Paper No. DETC2011-48304.

Kong,
X.
, and
Pfurner,
M.
, 2015, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms,” Mech. Mach. Theory,
85, pp. 116–128.

[CrossRef]