Research Papers

Structure, Design, and Modeling of an Origami-Inspired Pneumatic Solar Tracking System for the NPU-Phonesat

[+] Author and Article Information
Qiao Qiao

National Key Laboratory of Astronautics
Flight Dynamics,
School of Astronautics,
Northwestern Polytechnical University,
Xi’an, Shaanxi 710072, China
e-mail: doubleqiao1992@mail.nwpu.edu.cn

Jianping Yuan

National Key Laboratory of Astronautics
Flight Dynamics,
School of Astronautics,
Northwestern Polytechnical University,
Xi’an, Shaanxi 710072, China
e-mail: jyuan@nwpu.edu.cn

Yong Shi

Mechanical Engineering Department,
Stevens Institute of Technology,
Hoboken, NJ 07030
e-mail: yong.shi@stevens.edu

Xin Ning

National Key Laboratory of Astronautics
Flight Dynamics,
School of Astronautics,
Northwestern Polytechnical University,
Xi’an, Shaanxi 710072, China
e-mail: ningxin@nwpu.edu.cn

Fei Wang

National Key Laboratory of Astronautics
Flight Dynamics,
School of Astronautics,
Northwestern Polytechnical University,
Xi’an, Shaanxi 710072, China
e-mail: faywong@mail.nwpu.edu.cn

1Corresponding authors.

Manuscript received March 31, 2016; final manuscript received October 8, 2016; published online December 2, 2016. Assoc. Editor: Robert J. Wood.

J. Mechanisms Robotics 9(1), 011004 (Dec 02, 2016) (6 pages) Paper No: JMR-16-1085; doi: 10.1115/1.4035086 History: Received March 31, 2016; Revised October 08, 2016

Various plants have the ability to follow the sun with their flowers or leaves via a mechanism known as heliotropism, which is powered by pressure gradients between neighboring motor cells. Adapting this bio-inspired mechanism, in this paper we present a novel origami-inspired pneumatic solar tracking system for a picosatellite named NPU-PhoneSat that is capable of solar tracking without altering the attitude of the NPU-PhoneSat. We give an overview of the system design and address the theoretical problem of modeling the origami-inspired pneumatic solar tracking system. The theoretical results are compared with the experimental data, demonstrating the validity of the proposed analytical model. Such understanding of soft solar trackers will allow their performance to be predicted, thus enabling their wide utilization in enhancing energy supply.

Copyright © 2017 by ASME
Your Session has timed out. Please sign back in to continue.


Heidt, H. , Puig-Suari, J. , Moore, A. , Nakasuka, S. , and Twiggs, R. J. , 2000, “ CubeSat: A New Generation of Picosatellite for Education and Industry Low-Cost Space Experimentation,” 14th AIAA/USU Conference on Small Satellites, Paper No. SSC00-V-5.
Plaza, J. M. , Vilan, J. A. , Agelet, F. A. , Mancheno, J. B. , Estevez, M. L. , Fernandez, C. M. , and Ares, F. S. , 2010, “ Xatcobeo: Small Mechanisms for Cubesat Satellites Antenna and Solar Array Deployment,” 40th Aerospace Mechanisms Symposium, NASA Kennedy Space Centre, May 12–14, pp. 415–429.
Galen, C. , and Stanton, M. L. , 2003, “ Sunny-Side Up: Flower Heliotropism as a Source of Parental Environmental Effects on Pollen Quality and Performance in the Snow Buttercup, Ranunculus Adoneus (Ranunculaceae),” Am. J. Bot., 90(5), pp. 724–729. [CrossRef] [PubMed]
Rizk, J. , and Chaiko, Y. , 2008, “ Solar Tracking System: More Efficient Use of Solar Panels,” World Academy of Science, Engineering and Technology, Vol. 2, pp. 784–786.
Huang, B. J. , and Sun, F. S. , 2007, “ Feasibility Study of One Axis Three Positions Tracking Solar PV With Low Concentration Ratio Reflector,” Energy Convers. Manage., 48(4), pp. 1273–1280. [CrossRef]
Kacira, M. , Simsek, M. , Babur, Y. , and Demirkol, S. , 2004, “ Determining Optimum Tilt Angles and Orientations of Photovoltaic Panels in Sanliurfa, Turkey,” Renewable Energy, 29(8), pp. 1265–1275. [CrossRef]
Şenpinar, A. , and Cebeci, M. , 2012, “ Evaluation of Power Output for Fixed and Two-Axis Tracking PV Arrays,” Appl. Energy, 92, pp. 677–685. [CrossRef]
Felton, S. , Tolley, M. , Demaine, E. , Rus, D. , and Wood, R. , 2014, “ A Method for Building Self-Folding Machines,” Science, 345(6197), pp. 644–646. [CrossRef] [PubMed]
Wilson, L. , Pellegrino, S. , and Danner, R. , 2013, “ Origami Sunshield Concepts for Space Telescopes,” AIAA Paper No. 2013-1594.
Wang, Y. , Ge, L. , Wang, P. , Yan, M. , Yu, J. , and Ge, S. , 2014, “ A Three-Dimensional Origami-Based Immuno-Biofuel Cell for Self-Powered, Low-Cost, and Sensitive Point-of-Care Testing,” Chem. Commun., 50(16), pp. 1947–1949. [CrossRef]
Lendlein, A. , and Kelch, S. , 2002, “ Shape‐Memory Polymers,” Angew. Chem. Int. Ed., 41(12), pp. 2034–2057. [CrossRef]
Lu, W. , Fadeev, A. G. , Qi, B. , Smela, E. , Mattes, B. R. , Ding, J. , Spinks, G. M. , Mazurkiewicz, J. , Zhou, D. , Wallace, G. G. , MacFarlane, D. R. , Forsyth, S. A. , and Forsyth, M. , 2002, “ Use of Ionic Liquids for π-Conjugated Polymer Electrochemical Devices,” Science, 297(5583), pp. 983–987. [CrossRef] [PubMed]
Sidorenko, A. , Krupenkin, T. , Taylor, A. , Fratzl, P. , and Aizenberg, J. , 2007, “ Reversible Switching of Hydrogel-Actuated Nanostructures Into Complex Micropatterns,” Science, 315(5811), pp. 487–490. [CrossRef] [PubMed]
Smela, E. , 2003, “ Conjugated Polymer Actuators for Biomedical Applications,” Adv. Mater., 15(6), pp. 481–494. [CrossRef]
Haines, C. S. , Lima, M. D. , Li, N. , Spinks, G. M. , Foroughi, J. , Madden, J. D. W. , Kim, S. H. , Fang, S. , de Andrade, M. J. , Göktepe, F. , Göktepe, O. , Mirvakili, S. M. , Naficy, S. , Lepró, X. , Oh, J. , Kozlov, M. E. , Kim, S. J. , Xu, X. , Swedlove, B. J. , Wallace, G. G. , and Baughman, R. H. , 2014, “ Artificial Muscles From Fishing Line and Sewing Thread,” Science, 343(6173), pp. 868–872. [CrossRef] [PubMed]
Pelrine, R. , Kornbluh, R. , Pei, Q. , and Joseph, J. , 2000, “ High-Speed Electrically Actuated Elastomers With Strain Greater Than 100%,” Science, 287(5454), pp. 836–839. [CrossRef] [PubMed]
Guo, W. , Lu, C. H. , Orbach, R. , Wang, F. , Qi, X.-J. , and Cecconello, A. , 2015, “ pH‐Stimulated DNA Hydrogels Exhibiting Shape‐Memory Properties,” Adv. Mater., 27(1), pp. 73–78. [CrossRef] [PubMed]
Takashima, Y. , Hatanaka, S. , Otsubo, M. , Nakahata, M. , Kakuta, T. , Hashidzume, A. , Yamaguchi, H. , and Harada, A. , 2012, “ Expansion–Contraction of Photoresponsive Artificial Muscle Regulated by Host–Guest Interactions,” Nat. Commun., 3, p. 1270. [CrossRef] [PubMed]
Bushuyev, O. S. , Tomberg, A. , Friščić, T. , and Barrett, C. J. , 2013, “ Shaping Crystals With Light: Crystal-to-Crystal Isomerization and Photomechanical Effect in Fluorinated Azobenzenes,” J. Am. Chem. Soc., 135(34), pp. 12556–12559. [CrossRef] [PubMed]
Hawkes, E. , An, B. , Benbernou, N. M. , Tanaka, H. , Kim, S. , Demaine, E. D. , Rus, D. , and Wood, R. J. , 2010, “ Programmable Matter by Folding,” Proc. Natl. Acad. Sci., 107(28), pp. 12441–12445. [CrossRef]
Paik, J. K. , Byoungkwon, A. , Rus, D. , and Wood, R. J. , 2012, “ Robotic Origamis: Self-Morphing Modular Robot,” 2nd International Conference on Morphological Computation (ICMC), Venice, Italy, Sept. 12–14, Paper No. EPFL-CONF-206919.
Peraza-Hernandez, E. A. , Hartl, D. J. , and Malak, R. J., Jr ., 2013, “ Design and Numerical Analysis of an SMA Mesh-Based Self-Folding Sheet,” Smart Mater. Struct., 22(9), p. 094008. [CrossRef]
Hartl, D. , Lane, K. , and Malak, R. , 2012, “ Computational Design of a Reconfigurable Origami Space Structure Incorporating Shape Memory Alloy Thin Films,” ASME Paper No. SMASIS2012-8219.
Peraza-Hernandez, E. A. , Hartl, D. J. , Frei, K. R. , and Akleman, E. , 2014, “ Connectivity of Shape Memory Alloy-Based Self-Folding Structures,” AIAA Paper No. 2014-1415.
Kuribayashi, K. , Tsuchiya, K. , You, Z. , Tomus, D. , Umemoto, M. , Ito, T. , and Sasaki, M. , 2006, “ Self-Deployable Origami Stent Grafts as a Biomedical Application of Ni-Rich TiNi Shape Memory Alloy Foil,” Mater. Sci. Eng. A, 419(1), pp. 131–137. [CrossRef]
You, Z. , and Kuribayashi, K. , 2003, “ A Novel Origami Stent,” Summer Bioengineering Conference, Key Biscayne, FL, June 25–29.
Onal, C. D. , Wood, R. J. , and Rus, D. , 2011, “ Towards Printable Robotics: Origami-Inspired Planar Fabrication of Three-Dimensional Mechanisms,” IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9–13, pp. 4608–4613.
Lee, D. Y. , Kim, J. S. , Kim, S. R. , Koh, J.-S. , and Cho, K.-J. , 2013, “ The Deformable Wheel Robot Using Magic-Ball Origami Structure,” ASME Paper No. DETC2013-13016.
Firouzeh, A. , Sun, Y. , Lee, H. , and Paik, J. , 2013, “ Sensor and Actuator Integrated Low-Profile Robotic Origami,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Tokyo, Japan, Nov. 3–8, pp. 4937–4944.
Myers, B. , Bernardi, M. , and Grossman, J. C. , 2010, “ Three-Dimensional Photovoltaics,” Appl. Phys. Lett., 96(7), p. 071902. [CrossRef]
Guoa, X. , Lic, H. , Ahna, B. Y. , Duoss, E. B. , Hsia, K. J. , Lewis, J. A. , and Nuzzo, R. G. , 2009, “ Two-and Three-Dimensional Folding of Thin Film Single-Crystalline Silicon for Photovoltaic Power Applications,” PNAS, 106(48), pp. 20149–20154. [CrossRef] [PubMed]
Hunt, G. W. , and Ario, I. , 2005, “ Twist Buckling and the Foldable Cylinder: An Exercise in Origami,” Int. J. Non-Linear Mech., 40(6), pp. 833–843. [CrossRef]
Polygerinos, P. , Wang, Z. , Overvelde, J. T. B. , Galloway, K. C. , Wood, R. J. , Bertoldi, K. , and Walsh, C. J. , 2015, “ Modeling of Soft Fiber-Reinforced Bending Actuators,” IEEE Trans. Rob., 31(3), pp. 778–789. [CrossRef]
Wenbin, Z. , Bolin, L. , and Xingfan, Y. , 2008, “ Study on the Elastic Bending Property of Cylindrical Spring With Prestress,” Mech. Des., 25(1), pp. 25–27.
Dongmei, W. , 2008, “ Determination Method for the Elastic Module of Paper,” Pap. Pap. Manuf., 27(2), pp. 82–84.


Grahic Jump Location
Fig. 1

Yoshimura pattern with its respective semifolded shape. In this sketch, peak folds and valley folds are indicated by dashed lines and solid lines, respectively.

Grahic Jump Location
Fig. 2

Fabrication process of the origami-inspired solar tracker. (a) The origami structure in the form of the Yoshimura pattern; (b) the origami structure inserted in the cylindrical mold with elastomer premixture poured and cured; (c) origami-elastomer composite structure attached to elastomer caps; (d) threads inserted into one side of the origami structure; and (e) final design of the origami-inspired solar tracking system.

Grahic Jump Location
Fig. 3

The resting (left) and actuated states (right) of the fabricated solar tracking system

Grahic Jump Location
Fig. 4

Sketch of the top view of the origami structure. The hexagon formed by dashed line represents the distal cap of the internal pneumatic channel of the solar tracker.

Grahic Jump Location
Fig. 5

The geometric relationship between the total bending angle θ and the angle of the bending element β

Grahic Jump Location
Fig. 6

Close-up view of the bending element with half of the covering elastic material

Grahic Jump Location
Fig. 7

The equivalent linear spring of the origami structure proposed in the paper

Grahic Jump Location
Fig. 8

Comparison of the simulation and experimental results




Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In