0
Research Papers

The Synthesis of the Axodes of RCCC Linkages

[+] Author and Article Information
Giorgio Figliolini

DICeM,
University of Cassino & Southern Lazio,
G. Di Biasio 43,
Cassino, Frosinone 03043, Italy
e-mail: figliolini@unicas.it

Pierluigi Rea

DICeM,
University of Cassino & Southern Lazio,
G. Di Biasio 43,
Cassino, Frosinone 03043, Italy
e-mail: rea@unicas.it

Jorge Angeles

Department of Mechanical Engineering & CIM,
McGill University,
817 Sherbrooke Street West,
Montreal, QC H3A 2K6, Canada
e-mail: angeles@cim.mcgill.ca

1Corresponding author.

Manuscript received February 27, 2015; final manuscript received October 15, 2015; published online November 24, 2015. Assoc. Editor: Federico Thomas.

J. Mechanisms Robotics 8(2), 021011 (Nov 24, 2015) (9 pages) Paper No: JMR-15-1047; doi: 10.1115/1.4031950 History: Received February 27, 2015; Revised October 15, 2015; Accepted October 20, 2015

As the coupler link of an RCCC linkage moves, its instant screw axis (ISA) sweeps a ruled surface on the fixed link; by the same token, the ISA describes on the coupler link itself a corresponding ruled surface. These two surfaces are the axodes of the linkage, which roll while sliding and maintaining line contact. The axodes not only help to visualize the motion undergone by the coupler link but also can be machined as spatial cams and replace the four-bar linkage, if the need arises. Reported in this paper is a procedure that allows the synthesis of the axodes of an RCCC linkage. The synthesis of this linkage, in turn, is based on dual algebra and the principle of transference, as applied to a spherical four-bar linkage with the same input–output function as the angular variables of the RCCC linkage. Examples of RCCC linkages are included. Moreover, to illustrate the generality of the synthesis procedure, it is also applied to a spherical linkage, namely, the Hooke joint, and to the Bennett linkage.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Topics: Rotation , Linkages , Algebra
Your Session has timed out. Please sign back in to continue.

References

Beyer, R. , 1963, The Kinematic Synthesis of Mechanisms, H. Kuenzel , ed., Chapman & Hall, London.
Hartenberg, R. S. , and Denavit, J. , 1964, Kinematic Synthesis of Linkages, McGraw-Hill, New York.
Erdman, A. G. , and Sandor, G. N. , 1990, Mechanism Design: Analysis and Synthesis, Prentice Hall, Englewood Cliffs, NJ.
McCarthy, J. M. , 1990, Introduction to Theoretical Kinematics, MIT Press, Cambridge, MA.
McCarthy, J. M. , 2000, Geometric Design of Linkages, Springer-Verlag, New York, pp. 120–126.
Hunt, K. H. , 1990, Kinematic Geometry of Mechanisms, Oxford University Press, New York.
Waldron, K. J. , and Kinzel, G. L. , 1999, Kinematics, Dynamics and Design of Machinery, Wiley, New York.
Waldron, K. J. , 1973, “ A Study of Overconstrained Linkage Geometry by Solution of Closure Equations—Part I. Method of Study,” Mech. Mach. Theory, 8(1), pp. 95–104. [CrossRef]
Waldron, K. J. , 1973, “ A Study of Overconstrained Linkage Geometry by Solution of Closure Equations—Part II. Four Bar Linkages With Lower Pairs Joints Other Than Screw,” Mech. Mach. Theory, 8(2), pp. 233–247. [CrossRef]
Mavroidis, C. , and Roth, B. , 1995, “ Analysis of Overconstrained Mechanisms,” ASME J. Mech. Des., 117(6), pp. 69–74. [CrossRef]
Murray, A. P. , and Larochelle, P. M. , 1998, “ A Classification Scheme for Planar 4R, Spherical 4R, and Spatial RCCC Linkages to Facilitate Computer Animation,” ASME Paper No. DETC98/MECH-5887.
Yang, A. T. , and Freudenstein, F. , 1964, “ Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms,” ASME J. Appl. Mech., 31(2), pp. 300–308. [CrossRef]
Cheng, H. H. , 1994, “ Programming With Dual Numbers and Its Applications in Mechanisms Design,” Eng. Comput., 10(4), pp. 212–229. [CrossRef]
Pennestrì, E. , and Stefanelli, R. , 2007, “ Linear Algebra and Numerical Algorithms Using Dual Numbers,” Multibody Syst. Dyn., 18(3), pp. 323–344. [CrossRef]
González-Palacios, M. A. , and Angeles, J. , 1993, Cam Synthesis, Kluwer Academic, Dordrecht.
Figliolini, G. , and Angeles, J. , 2006, “ The Synthesis of the Pitch Surfaces of Internal and External Skew-Gears and Their Racks,” ASME J. Mech. Des., 128(4), pp. 794–802. [CrossRef]
Figliolini, G. , Stachel, H. , and Angeles, J. , 2013, “ On Martin Disteli's Spatial Cycloidal Gearing,” Mech. Mach. Theory, 60(1), pp. 73–89. [CrossRef]
Figliolini, G. , Stachel, H. , and Angeles, J. , 2015, “ The Role of the Orthogonal Helicoid in the Generation of the Tooth Flanks of Involute-Gear Pairs With Skew Axes,” ASME J. Mech. Rob., 7(1), p. 011003. [CrossRef]
Figliolini, G. , Rea, P. , and Angeles, J. , 2010, “ Synthesis of the Pitch Surfaces of Non-Circular Skew-Gears,” ASME Paper No. DETC2010-28902.
Mallik, A. K. , Ghosh, A. , and Dittrich, G. , 1994, Kinematic Analysis and Synthesis of Mechanisms, CRC Press, New York.
Fischer, I. S. , 1998, Dual-Number Methods in Kinematics, Statics and Dynamics, CRC Press, New York.
Bai, S. , and Angeles, J. , 2008, “ A Unified Input-Output Analysis of Four-Bar Linkages,” Mech. Mach. Theory, 43(2), pp. 240–251. [CrossRef]
Marble, S. D. , and Pennock, G. R. , 2000, “ Algebraic-Geometric Properties of the Coupler Curve of the RCCC Spatial Four-Bar Mechanism,” Mech. Mach. Theory, 35(5), pp. 675–693. [CrossRef]
Bennett, G. T. , 1903, “ A New Mechanism,” Engineering, 76(12), pp. 777–778.
Dunkerley, S. , 1920, Mechanism, Longmans, Green, London, pp. 406–414.
Baker, J. E. , 1979, “ The Bennett, Goldberg and Myard Linkages–In Perspective,” Mech. Mach. Theory, 14(4), pp. 239–253. [CrossRef]
Baker, J. E. , 1988, “ The Bennett Linkage and Its Associated Quadric Surfaces,” Mech. Mach. Theory, 23(2), pp. 147–156. [CrossRef]
Chung-Ching, L. , 1995, “ Kinematic Properties and Motion Generation Synthesis of Bennett 4R Mechanism,” Ninth IFToMM World Congress on the Theory of Machines and Mechanism, Milan, Italy, Aug. 29–Sept. 5, Vol. 1, pp. 291–295.
Baker, J. E. , 2001, “ On Certain Surfaces and Curves Associated With Bennett Linkage,” Proc. Inst. Mech. Eng., Part K, 219(3), pp. 217–224.
Perez, A. , and McCarty, J. M. , 2002, “ Bennett's Linkage and the Cylindroid,” Mech. Mach. Theory, 37(11), pp. 1245–1260. [CrossRef]
Perez, A. , and McCarthy, J. M. , 2003, “ Dimensional Synthesis of Bennett Linkages,” ASME J. Mech. Des., 125(1), pp. 98–104. [CrossRef]
Figliolini, G. , Conte, M. , and Rea, P. , 2012, “ Algebraic Algorithm for the Kinematic Analysis of Slider Crank/Rocker Mechanisms,” ASME J. Mech. Rob., 4(1), p. 011003. [CrossRef]
Sodhi, R. , and Shoup, T. E. , 1982, “ Axodes for the Four-Revolute Spherical Mechanism,” Mech. Mach. Theory, 17(3), pp. 173–178. [CrossRef]
Chiang, C. H. , 2000, Kinematics of Spherical Mechanisms, Krieger, Malabar, FL.
Stachel, H. , 2000, “ Instantaneous Spatial Kinematics and the Invariants of the Axodes,” Symposium Commemorating the Legacy, Works and Life of Sir Robert Stawell Ball, University of Cambridge, Cambridge, UK, pp. 1–13.
Baker, J. E. , 2001, “ The Axodes of Bennett Linkage,” Mech. Mach. Theory, 36(1), pp. 105–116. [CrossRef]
Jamalov, R. I. , Litvin, F. L. , and Roth, B. , 1984, “ Analysis and Design of RCCC Linkages,” Mech. Mach. Theory, 19(4/5), pp. 397–407. [CrossRef]
Sommer, H. J. , 2008, “ Jerk Analysis and Axode Geometry of Spatial Linkages,” ASME J. Mech. Des., 130(4), p. 042301. [CrossRef]
Skreiner, M. , 1967, “ Acceleration Analysis of Spatial Linkages Using Axodes and Instantaneous Screw Axis,” ASME J. Manuf. Sci. Eng., 89(1), pp. 97–101.
Baker, J. E. , 2006, “ Fixed Axode of a Linkage Coupler, Its Central Tangent Surface and Its Parameter of Distribution,” Proc. Inst. Mech. Eng. Part K, 220(1), pp. 1–8.
Chen, C.-H. S. , 2005, “ Formulas for Computing Axode Normal and Curvatures With Derivation Based on Fundamental Concepts of Engineering Differential Geometry,” Mech. Mach. Theory, 40(7), pp. 834–848. [CrossRef]
Baker, J. E. , 2005, “ The Curve of Striction of the Bennett Loop's Fixed Axode,” ASME J. Mech. Des., 127(1), pp. 607–611. [CrossRef]
Figliolini, G. , Rea, P. , and Angeles, J. , 2012, “ The Synthesis of the Axodes of Spatial Four-Bar Linkages,” ASME Paper No. DETC2012-71255.
Poinsot, L. , 1853, “ Théorie des Cones Circulaires Roulants,” J. Math. Pures Appl., Mallet-Bachelier, XVIII(1), pp. 41–70.
Figliolini, G. , and Angeles, J. , 2011, “ Synthesis of the Pitch Cones of N-Lobed Elliptical Bevel Gears,” ASME J. Mech. Des., 133(3), p. 031002. [CrossRef]
Dukkipati, R. V. , 2000, Spatial Mechanisms Analysis and Synthesis, CRC Press, Boca Raton, FL.
Reuleaux, F. , 1963, The Kinematics of Machinery, Dover Publications, New York, pp. 315–316.
Cardani, H. , 1663, Mediolanensis Philosophi ac Medici Celeberrimi Operum, Tomus X, De Rebus factis & artificiis, Liber V, De Armillarum Instrumento, Cap. VII, Sumptibus Ioannis Antonii Huguetan & Marci Antonii Ravavd, Lugduni (Lyon), France, pp. 488–489.
Willis, R. , 1870, Principles of Mechanism, 2nd ed., Longmans Green, London, pp. 163–164.
Seherr-Thoss, H. C. , Schmelz, F. , and Aucktor, E. , 2006, Universal Joints and Driveshafts, 2nd ed., J. A. Tipper , and S. J. Hill , eds., Springer-Verlag, Berlin.
Hooke, R. , 1676, A Description of Helioscopes and Some Other Instruments, Royal Society, London.
Dudiţă, F. I. , Diaconescu, D. , and Gogu, G. , 1989, Mecanisme Articulate, Editura Tehnică, Bucharest, Romania.
Bottema, O. , and Roth, B. , 1979, Theoretical Kinematics, Dover Publications, New York, p. 348.

Figures

Grahic Jump Location
Fig. 1

Spatial four-bar linkage: Euclidean space

Grahic Jump Location
Fig. 2

Spherical four-bar linkage: dual space

Grahic Jump Location
Fig. 3

Original drawings of the Poinsot cones [44]

Grahic Jump Location
Fig. 4

RCCC four-bar parallelogram for a1 = a3 = 50 mm, a2 = a4 = 10 mm, α1 = α3 = 70 deg, and α2 = α4 = 30 deg

Grahic Jump Location
Fig. 5

RCCC four-bar antiparallelogram for a1 = a3 = 50 mm, a2 = a4 = 10 mm, α1 = α3 = 70 deg, and α2 = α4 = 30 deg

Grahic Jump Location
Fig. 6

Spherical four-bar antiparallelogram for α1 = α3 = 99 deg, α2 = α4 = 130 deg

Grahic Jump Location
Fig. 7

Hooke joint for α1 = α2 = α3 = 0 deg, α4 = 135 deg

Grahic Jump Location
Fig. 8

Bennett mechanism for a1 = a3 = 30 mm, α1 = α3 = 99 deg, and α2 = α4 = 130 deg

Grahic Jump Location
Fig. 9

Original sketches: (a) gimbals from Cardan's book [48] and (b) Cardan joint from De Subtilitate, Book I, 1550

Grahic Jump Location
Fig. 11

Oldham's arrangement by Willis [49]

Grahic Jump Location
Fig. 12

RCCC four-bar linkage with double-crank for a1 = 30 mm, a2 = 25 mm, a3 = 17 mm, a4 = 10 mm, α1 = 85 deg, α1 = 74 deg, α3 = 97 deg, α4 = 153 deg, and s1 = −30

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In