Research Papers

Soft Origami: Classification, Constraint, and Actuation of Highly Compliant Origami Structures

[+] Author and Article Information
Charles M. Wheeler

Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
e-mail: wheelerc@mit.edu

Martin L. Culpepper

Fellow ASME
Massachusetts Institute of Technology,
77 Massachusetts Avenue,
Cambridge, MA 02139
e-mail: culpepper@mit.edu

Manuscript received September 14, 2015; final manuscript received December 17, 2015; published online May 4, 2016. Assoc. Editor: James Schmiedeler.

J. Mechanisms Robotics 8(5), 051012 (May 04, 2016) (7 pages) Paper No: JMR-15-1262; doi: 10.1115/1.4032472 History: Received September 14, 2015; Revised December 17, 2015

Herein, we discuss the folding of highly compliant origami structures—“Soft Origami.” There are benefits to be had in folding compliant sheets (which cannot self-guide their motion) rather than conventional rigid origami. Example applications include scaffolds for artificial tissue generation and foldable substrates for flexible electronic assemblies. Highly compliant origami has not been contemplated by existing theory, which treats origami structures largely as rigid or semirigid mechanisms with compliant hinges—“mechanism-reliant origami.” We present a quantitative metric—the origami compliance metric (OCM)—that aids in identifying proper modeling of a homogeneous origami structure based upon the compliance regime it falls into (soft, hybrid, or mechanism-reliant). We discuss the unique properties, applications, and design drivers for practical implementation of Soft Origami. We detail a theory of proper constraint by which an ideal soft structure's number of degrees-of-freedom may be approximated as 3n, where n is the number of vertices of the fold pattern. Buckling and sagging behaviors in very compliant structures can be counteracted with the application of tension; we present a method for calculating the tension force required to reduce sagging error below a user-prescribed value. Finally, we introduce a concept for a scalable process in which a few actuators and stretching membranes may be used to simultaneously fold many origami substructures that share common degrees-of-freedom.

Copyright © 2016 by ASME
Your Session has timed out. Please sign back in to continue.


Siegel, A. C. , Phillips, S. T. , Dickey, M. D. , Lu, N. , Suo, Z. , and Whitesides, G. M. , 2010, “ Foldable Printed Circuit Boards on Paper Substrates,” Adv. Funct. Mater., 20(1), pp. 28–35. [CrossRef]
Chen, A. A. , Thomas, D. K. , Ong, L. L. , Schwartz, R. E. , Golub, T. R. , and Bhatia, S. N. , 2011, “ Humanized Mice With Ectopic Artificial Liver Tissues,” Proc. Natl. Acad. Sci. U.S.A., 108(29), pp. 11842–11847. [CrossRef] [PubMed]
Levenberg, S. , Rouwkema, J. , Macdonald, M. , Garfein, E. S. , Kohane, D. S. , Darland, D. C. , Marini, R. , van Blitterswijk, C. A. , Mulligan, R. C. , D'Amore, P. A. , and Langer, R. , 2005, “ Engineering Vascularized Skeletal Muscle Tissue,” Nat. Biotechnol., 23(7), pp. 879–884. [CrossRef] [PubMed]
Stevens, K. R. , Kreutziger, K. L. , Dupras, S. K. , Korte, F. S. , Regnier, M. , Muskheli, V. , Nourse, M. B. , Bendixen, K. , Reinecke, H. , and Murry, C. E. , 2009, “ Physiological Function and Transplantation of Scaffold-Free and Vascularized Human Cardiac Muscle Tissue,” Proc. Natl. Acad. Sci. U.S.A., 106(39), pp. 16568–16573. [CrossRef] [PubMed]
Glicklis, R. , Merchuk, J. C. , and Cohen, S. , 2004, “ Modeling Mass Transfer in Hepatocyte Spheroids Via Cell Viability, Spheroid Size, and Hepatocellular Functions,” Biotechnol. Bioeng., 86(6), pp. 672–680. [CrossRef] [PubMed]
Wood, F. M. , Stoner, M. L. , Fowler, B. V. , and Fear, M. W. , 2007, “ The Use of a Non-Cultured Autologous Cell Suspension and Integra® Dermal Regeneration Template to Repair Full-Thickness Skin Wounds in a Porcine Model: A One-Step Process,” Burns, 33(6), pp. 693–700. [CrossRef] [PubMed]
Atala, A. , Bauer, S. B. , Soker, S. , Yoo, J. J. , and Retik, A. B. , 2006, “ Tissue-Engineered Autologous Bladders for Patients Needing Cystoplasty,” Lancet, 367(9518), pp. 1241–1246. [CrossRef] [PubMed]
Macchiarini, P. , Jungebluth, P. , Go, T. , Asnaghi, M. A. , Rees, L. E. , Cogan, T. A. , Dodson, A. , Martorell, J. , Bellini, S. , Parnigotto, P. P. , Dickinson, S. C. , Hollander, A. P. , Mantero, S. , Conconi, M. T. , and Birchall, M. A. , 2008, “ Clinical Transplantation of a Tissue-Engineered Airway,” Lancet, 372(9655), pp. 2023–2030. [CrossRef] [PubMed]
Shin'oka, T. , Imai, Y. , and Ikada, Y. , 2001, “ Transplantation of a Tissue-Engineered Pulmonary Artery,” N. Engl. J. Med., 344(7), pp. 532–533. [CrossRef] [PubMed]
Jakab, K. , Norotte, C. , Marga, F. , Murphy, K. , Vunjak-Novakovic, G. , and Forgacs, G. , 2010, “ Tissue Engineering by Self-Assembly and Bio-Printing of Living Cells,” Biofabrication, 2(2), p. 022001. [CrossRef] [PubMed]
Miller, J. S. , Stevens, K. R. , Yang, M. T. , Baker, B. M. , Nguyen, D.-H. T. , Cohen, D. M. , Toro, E. , Chen, A. A. , Galie, P. A. , Yu, X. , Chaturvedi, R. , Bhatia, S. N. , and Chen, C. S. , 2012, “ Rapid Casting of Patterned Vascular Networks for Perfusable Engineered Three-Dimensional Tissues,” Nat. Mater., 11(9), pp. 768–774. [CrossRef] [PubMed]
Tachi, T. , 2009, “ Generalization of Rigid Foldable Quadrilateral Mesh Origami,” International Association for Shell and Spatial Structures (IASS) Symposium, Valencia, Spain, Sept. 28–Oct. 2, pp. 2287–2294.
Belcastro, S.-M. , and Hull, T. C. , 2002, “ A Mathematical Model for Non-Flat Origami,” Origami3: 3rd International Meeting of Origami Mathematics, Science, and Education, Monterey, CA, Mar. 9–11, A. K. Peters, Natick, MA, pp. 39–51.
Tachi, T. , 2009, “ Simulation of Rigid Origami,” Origami, 4, pp. 175–187.
Bowen, L. A. , Baxter, W. L. , Magleby, S. P. , and Howell, L. L. , 2014, “ A Position Analysis of Coupled Spherical Mechanisms Found in Action Origami,” Mech. Mach. Theory, 77, pp. 13–24. [CrossRef]
Noy, B. , George, M. S. , Alla, B. , Nana, Y. A. , and David, H. G. , 2011, “ Hands-Free Microscale Origami,” Origami 5, CRC Press, Boca Raton, FL, pp. 371–384.
Kuribayashi-Shigetomi, K. , Onoe, H. , and Takeuchi, S. , 2012, “ Cell Origami: Self-Folding of Three-Dimensional Cell-Laden Microstructures Driven by Cell Traction Force,” PLoS One, 7(12), p. e51085. [CrossRef] [PubMed]
Shenoy, V. B. , and Gracias, D. H. , 2012, “ Self-Folding Thin-Film Materials: From Nanopolyhedra to Graphene Origami,” MRS Bull., 37(9), pp. 847–854. [CrossRef]
Liu, Y. , Boyles, J. K. , Genzer, J. , and Dickey, M. D. , 2012, “ Self-Folding of Polymer Sheets Using Local Light Absorption,” Soft Matter, 8(6), pp. 1764–1769. [CrossRef]
Hawkes, E. , An, B. , Benbernou, N. M. , Tanaka, H. , Kim, S. , Demaine, E. D. , Rus, D. , and Wood, R. J. , 2010, “ Programmable Matter by Folding,” Proc. Natl. Acad. Sci. U.S.A., 107(28), pp. 12441–12445. [CrossRef] [PubMed]
Felton, S. M. , Tolley, M. T. , Shin, B. H. , Onal, C. D. , Demaine, E. D. , Rus, D. , and Wood, R. J. , 2013, “ Self-Folding With Shape Memory Composites,” Soft Matter, 9(32), pp. 7688–7694. [CrossRef]
Ryu, J. , D'Amato, M. , Cui, X. , Long, K. N. , Qi, H. J. , and Dunn, M. L. , 2012, “ Photo-Origami—Bending and Folding Polymers With Light,” Appl. Phys. Lett., 100(16), p. 161908. [CrossRef]
Fernandes, R. , and Gracias, D. H. , 2012, “ Self-Folding Polymeric Containers for Encapsulation and Delivery of Drugs,” Adv. Drug Delivery Rev., 64(14), pp. 1579–1589. [CrossRef]
Bassik, N. , Stern, G. M. , and Gracias, D. H. , 2009, “ Microassembly Based on Hands Free Origami With Bidirectional Curvature,” Appl. Phys. Lett., 95(9), p. 091901. [CrossRef]
Randall, C. L. , Gultepe, E. , and Gracias, D. H. , 2012, “ Self-Folding Devices and Materials for Biomedical Applications,” Trends Biotechnol., 30(3), pp. 138–146. [CrossRef] [PubMed]
Timoshenko, S. P. , and Goodier, J. , 1951, Theory of Elasticity, McGraw-Hill, New York.
Young, W. C. , Budynas, R. G. , and Sadegh, A. M. , 2012, Formulas for Stress and Strain, 8th ed., McGraw-Hill, New York.
Ashby, M. F. , 2005, Materials Selection in Mechanical Design, Butterworth-Heinemann, Oxford, UK.
Ragab, A.-R. A. , and Bayoumi, S. E. A. , 1998, Engineering Solid Mechanics: Fundamentals and Applications, CRC Press, Boca Raton, FL.


Grahic Jump Location
Fig. 3

Model of wide beam exposed to moment loads “M.” The beam exhibits constant curvature along its length

Grahic Jump Location
Fig. 2

Illustration of ideal Soft Origami sheet, capable of bending to any curvature

Grahic Jump Location
Fig. 1

Miura-ori lattice machined from high-density polyethylene (HDPE). Bending allowed by living hinges, this structure's designed-in mechanism feature.

Grahic Jump Location
Fig. 4

Examples of peak curvatures achievable by structures representing each of the three OCM regimes

Grahic Jump Location
Fig. 5

The level-span catenary suspension representation of sagging panel. Note that vertical forces (not pictured here) are also exerted at the endpoints of the span, with total magnitude equivalent to the weight of the span.

Grahic Jump Location
Fig. 6

Sagging ratio as a function of tension ratio

Grahic Jump Location
Fig. 7

6 × 6-panel Miura-ori folding diagram. Dotted lines, solid interal lines, and dots represent valley folds, mountain folds, and vertices, respectively.

Grahic Jump Location
Fig. 8

Membrane-driven folding process by which a Soft Origami sheet may be folded using elastic membranes

Grahic Jump Location
Fig. 9

Preliminary test of the membrane-driven technique. A Soft Origami polyester film is shown passing through an intermediate folding angle.



Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In