Wenger, P.
, 2007, “Cuspidal and Non-Cuspidal Robot Manipulators,” Robotica, 25(6), pp. 677–689.

[CrossRef]
Wenger, P.
, 2000, “Some Guidelines for the Kinematic Design of New Manipulators,” Mech. Mach. Theory, 35(3), pp. 437–449.

[CrossRef]
Paul, R.
, and
Zhang, H.
, 1986, “Computationally Efficient Kinematics for Manipulators With Spherical Wrists Based on the Homogeneous Transformation Representation,” Int. J. Rob. Res., 5(2), pp. 32–44.

[CrossRef]
Husty, M.
,
Ottaviano, E.
, and
Ceccarelli, M.
, 2008, “A Geometrical Characterization of Workspace Singularities in 3R Manipulators,” Advances in Robot Kinematics: Analysis and Design,
J. Lenarčič
, and
Ph. Wenger
, eds., Springer, Dordrecht, The Netherlands, pp. 411–418.

Pieper, D. L.
, 1968, “The Kinematics of Manipulators Under Computer Control,” Ph.D. thesis, Department of Mechanical Engineering, Stanford University, Stanford, CA.

Kovács, P.
, and
Hommel, G.
, 1993, “On the Tangent-Half-Angle Substitution,” Computational Kinematics,
J. Angeles
,
G. Hommel
, and
P. Kovács
, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 27–39.

Smith, D. R.
, and
Lipkin, H.
, 1993, “Higher Order Singularities of Regional Manipulators,” IEEE International Conference on Robotics and Automation, Atlanta, GA, May 2–6, Vol. 1, pp. 194–199.

Smith, D. R.
, and
Lipkin, H.
, 1990, “Kinematic Analysis of Solvable Manipulators Using Conic Sections,” 21st ASME Mechanisms Conference, Chicago, IL, Sept. 16–19, pp. 16–19.

Ceccarelli, M.
, 1989, “On the Workspace of 3R Robot Arms,” 5th IFToMM International Symposium on Theory and Practice of Mechanism, Bucharest, Romania, July 6–11, Vol. II–1, pp. 37–46.

Zein, M.
, 2007, “Analyse cinématique des manipulateurs sériels 3R orthogonaux et des manipulateurs parallèles plans,” Ph.D. dissertation, École Central de Nantes, Université de Nantes, Nantes, France.

Bamberger, H.
,
Wolf, A.
, and
Shoham, M.
, 2008, “Assembly Mode Changing in Parallel Mechanisms,” IEEE Trans. Rob., 24(4), pp. 765–772.

[CrossRef]
Saramago, S. F. P.
,
Ottaviano, E.
, and
Ceccarelli, M.
, 2002, “A Characterization of the Workspace Boundary of Three-Revolute Manipulators,” ASME Paper No. DETC2002/MECH-34342.

Wenger, P.
, 1997, “Design of Cuspidal and Non-Cuspidal Robot Manipulators,” IEEE International Conference on Robotics and Automation, Albuquerque, NM, Apr. 20–25, pp. 2172–2177.

Baili, M.
, 2004, “Analyse et classification de manipulateurs 3R à axes orthogonaux,” Ph.D. dissertation, École Central de Nantes, Université de Nantes, Nantes, France.

Donelan, P.
, and
Müller, A.
, 2011, “General Formulation of the Singularity Locus for a 3-DOF Regional Manipulator,” IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9-13, pp. 3958–3963.

Thomas, F.
, 2014, “Computing Cusps of 3R Robots Using Distance Geometry,” 14th International Symposium on Advances in Robot Kinematics (ARK2014), Ljubljana, Slovenia, June 29–July 3.

Thomas, F.
, and
Ros, L.
, 2005, “Revisiting Trilateration for Robot Localization,” IEEE Trans. Rob., 21(1), pp. 93–101.

[CrossRef]
Faucette, W. M.
, 1996, “A Geometric Interpretation of the Solution of the General Quartic Polynomial,” Am. Math. Mon., 103(1), pp. 51–57.

[CrossRef]
Bôcher, M.
, 1915, Plane Analytic Geometry, Henry Holt and Co., New York, pp. 176–188.

Choi, Y.-K.
,
Wang, W.
,
Liu, Y.
, and
Kim, M.-S.
, 2006, “Continuous Collision Detection for Two Moving Elliptic Disks,” IEEE Trans. Rob., 22(2), pp. 213–224.

[CrossRef]
Sommerville, D. M. Y.
, 1961, Analytical Conics, G. Bell & Sons, London, UK, p. 274.

Richter-Gebert, J.
, 2011, Perspectives on Projective Geometry: A Guided Tour Through Real and Complex Geometry, Springer, Dordrecht, The Netherlands, p. 191.

Salmon, G.
, 1869, A Treatise on Conic Sections, Chelsea Publishing Co., New York.

Elizalde, B.
,
Alberich-Carramiñana, M.
, and
Thomas, F.
, “On the Relative Position of Two Coplanar Ellipses” (unpublished).

Dickson, L. E.
, 1914, Elementary Theory of Equations, Wiley, New York.

Blinn, J. F.
, 2002, “Polynomial Discriminants. I. Matrix Magic,” IEEE Comput. Graphics Appl., 20(6), pp. 94–98.

[CrossRef]
Dolgachev, I. V.
, 2012, Classical Algebraic Geometry: A Modern View, Cambridge University Press, Cambridge, UK, p. 107.

Srinivasiengar, C. N.
, 1927, “On the Conditions for the Double Contact of Two Conics,” J. Mysore Univ., 1(2), pp. 110–111.

Sylvester, J. J.
, 1904, “Additions to the Articles'On a New Class of Theorems' and ‘On Pascal's Theorem,’” Philos. Mag., 37(251), pp. 363–370, 1850 (reprinted in 1904, J. J. Sylvester's Mathematical Papers, Vol. 1, Cambridge University Press, Cambridge, UK, pp. 145–151).

Morris, R.
, 1997, “The Use of Computer Graphics for Solving Problems in Singularity Theory,” Visualization and Mathematics, Experiments, Simulations and Environments,
H. C. Hege
, and
K. Polthier
, eds., Springer, Dordrecht, The Netherlands, pp. 53–66.

Thomas, F.
, and
Wenger, P.
, 2011, “On the Topological Characterization of Robot Singularity Loci. A Catastrophe-Theoretic Approach,” IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May 9–13, pp. 3940–3945.