Roth,
Z.
,
Mooring,
B.
, and
Ravani,
B.
, 1987, “
An Overview of Robot Calibration,” IEEE J. Rob. Autom.,
3(5), pp. 377–385.

[CrossRef]
Dawood,
H.
, 2011, Theories of Interval Arithmetic: Mathematical Foundations and Applications,
Lambert Academic Publishing,
Saarbrücken, Germany.

Moore,
R. E.
, 1966, Interval Analysis,
Prentice Hall,
Englewood Cliffs, NJ.

Rao,
R. S.
,
Asaithambi,
A.
, and
Agrawal,
S. K.
, 1998, “
Inverse Kinematic Solution of Robot Manipulators Using Interval Analysis,” ASME J. Mech. Des.,
120(1), pp. 147–150.

[CrossRef]
Merlet,
J.
, 2004, “
Solving the Forward Kinematics of a Gough-Type Parallel Manipulator With Interval Analysis,” Int. J. Rob. Res.,
23(3), pp. 221–235.

[CrossRef]
Merlet,
J. P.
, and
Daney,
D.
, 2001, “
A Formal-Numerical Approach to Determine the Presence of Singularity Within the Workspace of a Parallel Robot,” 2nd Workshop on Computational Kinematics, Seoul, South Korea, May 20–22, pp. 167–176.

Tagawa,
K.
,
Takami,
H.
,
Shiraki,
K.
, and
Haneda,
H.
, 2001, “
Optimal Configuration Problem of Redundant Arms Considering Endpoint Compliance and Its Solution Using Interval Analysis,” Trans. Soc. Instrum. Control Eng.,
37(10), pp. 990–992.

[CrossRef]
Carreras,
C.
, and
Walker,
I. D.
, 2001, “
Interval Methods for Fault-Tree Analysis in Robotics,” IEEE Trans. Reliab.,
50(1), pp. 3–11.

[CrossRef]
Daney,
D.
,
Nicolas,
A.
,
Gilles
,
Ch.
, and
Yves,
P.
, 2006, “
Interval Method for Calibration of Parallel Robots: Vision-Based Experiments,” Mech. Mach. Theory,
41(8), pp. 929–944.

[CrossRef]
Oettli,
W.
, 1965, “
On the Solution Set of a Linear System With Inaccurate Coefficients,” J. Soc. Ind. Appl. Math., Ser. B,
2(1), pp. 115–118.

[CrossRef]
Hansen,
E.
, and
Smith,
R.
, 1967, “
Interval Arithmetic in Matrix Computations, Part II,” SIAM J. Numer. Anal.,
4(1), pp. 1–9.

[CrossRef]
Neumaier,
A.
, 2008, Interval Methods for Systems of Equations,
Cambridge University Press,
Cambridge, UK.

Oettli,
W.
,
Prager,
W.
, and
Wilkinson,
J.
, 1965, “
Admissible Solutions of Linear Systems With Not Sharply Defined Coefficients,” J. Soc. Ind. Appl. Math., Ser. B,
2(2), pp. 291–299.

[CrossRef]
Hartfiel,
D.
, 1980, “
Concerning the Solution Set of

*Ax* =

*B* Where

*P* ≤

*A* ≤

*Q* and

*P* ≤

*B* ≤

*Q*,” J. Numer. Math.,
35(3), pp. 355–359.

[CrossRef]
Hansen,
E.
, 1992, “
Bounding the Solution of Interval Linear Equations,” SIAM J. Numer. Anal.,
29(5), pp. 1493–1503.

[CrossRef]
Jansson,
C.
, 1991, “
Interval Linear Systems With Symmetric Matrices, Skew-Symmetric Matrices and Dependencies in the Right Hand Side,” J. Comput.,
46(3), pp. 265–274.

[CrossRef]
Rump,
S. M.
, 1994, “
Verification Methods for Dense and Sparse Systems of Equations,” Topics in Validated Computations, Studies in Computational Mathematics,
J. Herzberger
, ed.,
Elsevier,
Amsterdam, pp. 63–136.

Popova,
E.
, and
Krämer,
W.
, 2008, “
Visualizing Parametric Solution Sets,” BIT Numer. Math.,
48(1), pp. 95–115.

[CrossRef]
Moore,
R. E.
,
Cloud,
M. J.
, and
Kearfott,
R. B.
, 2009, Introduction to Interval Analysis,
SIAM, Philadelphia.

Paul,
R. P.
, 1981, Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators,
MIT Press, Cambridge, MA.

Hayati,
S. A.
, 1983, “
Robot Arm Geometric Link Parameter Estimation,” 22nd IEEE Conference on Decision and Control (CDC), San Antonio, TX, Dec. 14–16, Vol.
22, pp. 1477–1483.

Popova,
E. D.
, 2004, “
Strong Regularity of Parametric Interval Matrices,” 33rd Spring Conference of the Union of Bulgarian Mathematicians: Mathematics and Education in Mathematics, Borovetz, Bulgaria, Apr. 1–4, pp. 446–451.

Hladík,
M.
, 2012, “
Enclosures for the Solution Set of Parametric Interval Linear Systems,” Int. J. Appl. Math. Comput. Sci.,
22(3), pp. 561–574.

Rump,
S. M.
, 1999, “
INTLAB—INTerval LABoratory,” Developments in Reliable Computing,
T. Csendes
, ed.,
Kluwer Academic Publishers,
Dordrecht, The Netherlands, pp. 77–104.