0
Research Papers

Isotropic Compliance in E(3): Feasibility and Workspace Mapping

[+] Author and Article Information
Matteo Verotti

Department of Mechanics
and Aerospace Engineering,
Sapienza University of Rome,
Rome 00149, Italy
e-mail: matteo.verotti@uniroma1.it

Nicola P. Belfiore

Department of Mechanics
and Aerospace Engineering,
Sapienza University of Rome,
Rome 00149, Italy
e-mail: belfiore@dima.uniroma1.it

1Corresponding author.

Manuscript received September 9, 2015; final manuscript received December 15, 2015; published online September 6, 2016. Assoc. Editor: Federico Thomas.

J. Mechanisms Robotics 8(6), 061005 (Sep 06, 2016) (9 pages) Paper No: JMR-15-1245; doi: 10.1115/1.4032408 History: Received September 09, 2015; Revised December 15, 2015

A manipulator control system, for which isotropic compliance holds in the Euclidean space E(3), can be significantly simplified by means of diagonal decoupling. However, such simplification may introduce some limits to the region of the workspace where the sought property can be achieved. The present investigation reveals how to detect which peculiar subset, among four different classes, a given manipulator belongs to. The paper also introduces the concept of control gain ratio for each specific single-input/single-output joint control law in order to limit the maximum gain required to achieve the isotropic compliance condition.

FIGURES IN THIS ARTICLE
<>
Copyright © 2016 by ASME
Topics: Manipulators
Your Session has timed out. Please sign back in to continue.

References

McCarthy, J. , 2011, “ 21st Century Kinematics: Synthesis, Compliance, and Tensegrity,” ASME J. Mech. Rob., 3(2), p. 020201. [CrossRef]
Borràs, J. , and Dollar, A. , 2014, “ Actuation Torque Reduction in Parallel Robots Using Joint Compliance,” ASME J. Mech. Rob., 6(2), p. 021006. [CrossRef]
Kao, I. , and Yang, F. , 2004, “ Stiffness and Contact Mechanics for Soft Fingers in Grasping and Manipulation,” IEEE Trans. Rob. Autom., 20(1), pp. 132–135. [CrossRef]
Zinn, M. , Khatib, O. , and Roth, B. , 2004, “ A New Actuation Approach for Human Friendly Robot Design,” IEEE International Conference on Robotics and Automation (ICRA’04), New Orleans, LA, Apr. 26–May 1, Vol. 1, pp. 249–254.
Sentis, L. , Park, J. , and Khatib, O. , 2010, “ Compliant Control of Multicontact and Center-of-Mass Behaviors in Humanoid Robots,” IEEE Trans. Rob., 26(3), pp. 483–501. [CrossRef]
Visser, L. , Carloni, R. , and Stramigioli, S. , 2011, “ Energy-Efficient Variable Stiffness Actuators,” IEEE Trans. Rob., 27(5), pp. 865–875. [CrossRef]
Li, M. , Wu, H. , and Handroos, H. , 2011, “ Static Stiffness Modeling of a Novel Hybrid Redundant Robot Machine,” Fusion Eng. Des., 86(9–11), pp. 1838–1842. [CrossRef]
Knapczyk, J. , and Ryska, M. , 2012, “ Stiffness Matrix Analysis of Six-Revolute Serial Manipulator,” Acta Mech. Autom., 6(2), pp. 62–65.
Flacco, F. , De Luca, A. , Sardellitti, I. , and Tsagarakis, N. , 2012, “ On-Line Estimation of Variable Stiffness in Flexible Robot Joints,” Int. J. Rob. Res., 31(13), pp. 1556–1577. [CrossRef]
Chen, H. , and Liu, Y. , 2013, “ Robotic Assembly Automation Using Robust Compliant Control,” Rob. Comput.-Integr. Manuf., 29(2), pp. 293–300. [CrossRef]
Kim, H. S. , and Lipkin, H. , 2014, “ Stiffness of Parallel Manipulators With Serially Connected Legs,” ASME J. Mech. Rob., 6(3), p. 031001. [CrossRef]
Hu, B. , Yu, J. , Lu, Y. , Sui, C. , and Han, J. , 2012, “ Statics and Stiffness Model of Serial-Parallel Manipulator Formed by k Parallel Manipulators Connected in Series,” ASME J. Mech. Rob., 4(2), p. 021012. [CrossRef]
Huang, S. , and Schimmels, J. , 2011, “ Realization of an Arbitrary Planar Stiffness With a Simple Symmetric Parallel Mechanism,” ASME J. Mech. Rob., 3(4), p. 041006. [CrossRef]
Palli, G. , Berselli, G. , Melchiorri, C. , and Vassura, G. , 2011, “ Design of a Variable Stiffness Actuator Based on Flexures,” ASME J. Mech. Rob., 3(3), p. 034501. [CrossRef]
Portman, V. , 2011, “ Stiffness Evaluation of Machines and Robots: Minimum Collinear Stiffness Value Approach,” ASME J. Mech. Rob., 3(1), p. 011015. [CrossRef]
Pottmann, H. , Peternell, M. , and Ravani, B. , 1999, “ An Introduction to Line Geometry With Applications,” Comput.-Aided Des., 31(1), pp. 3–16. [CrossRef]
Wolf, A. , and Shoham, M. , 2003, “ Investigation of Parallel Manipulators Using Linear Complex Approximation,” ASME J. Mech. Des., 125(3), pp. 564–572. [CrossRef]
Forsythe, G. E. , and Moler, C. B. , 1967, Computer Solution of Linear Algebraic Systems, Vol. 7, Prentice-Hall, Upper Saddle River, NJ.
Vinogradov, I. B. , Kobrinski, A. E. , Stepanenko, Y. E. , and Tives, L. T. , 1971, “ Details of Kinematics of Manipulators With the Method of Volumes,” Mekhanika Mashin, 1(5), pp. 5–16.
Kumar, A. , and Waldron, K. J. , 1981, “ The Workspace of a Mechanical Manipulator,” ASME J. Mech. Des., 103(3), pp. 665–672. [CrossRef]
Salisbury, J. , and Craig, J. , 1982, “ Articulated Hands: Force Control and Kinematic Issues,” Int. J. Rob. Res., 1(1), pp. 4–17. [CrossRef]
Yoshikawa, T. , 1984, “ Analysis and Control of Robot Manipulators With Redundancy,” Robotics Research: The First International Symposium, M. Brady and R. Paul, eds., MIT Press, Cambridge, MA, pp. 735–747.
Paul, R. P. , and Stevenson, C. N. , 1983, “ Kinematics of Robot Wrists,” Int. J. Rob. Res., 2(1), pp. 31–38. [CrossRef]
Yang, D. C. , and Lai, Z. C. , 1985, “ On the Dexterity of Robotic Manipulators—Service Angle,” ASME J. Mech., Transm., Autom. Des., 107(5), pp. 262–270. [CrossRef]
Yoshikawa, T. , 1985, “ Manipulability of Robotic Mechanisms,” Int. J. Rob. Res., 4(2), pp. 3–9. [CrossRef]
Klein, C. A. , and Blaho, B. E. , 1987, “ Dexterity Measures for the Design and Control of Kinematically Redundant Manipulators,” Int. J. Rob. Res., 6(2), pp. 72–83. [CrossRef]
Klein, C. A. , and Miklos, T. A. , 1991, “ Spatial Robotic Isotropy,” Int. J. Rob. Res., 10(4), pp. 426–437. [CrossRef]
Kim, J. O. , and Khosla, K. , 1991, “ Dexterity Measures for Design and Control of Manipulators,” IEEE/RSJ International Workshop on Intelligent Robots and Systems, Osaka, Japan, Nov. 3–5, pp. 758–763.
Angeles, J. , and López-Cajún, C. S. , 1992, “ Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators,” Int. J. Rob. Res., 11(6), pp. 560–571. [CrossRef]
Angeles, J. , 1992, “ The Design of Isotropic Manipulator Architectures in the Presence of Redundancies,” Int. J. Rob. Res., 11(3), pp. 196–201. [CrossRef]
Park, F. C. , and Brockett, R. W. , 1994, “ Kinematic Dexterity of Robotic Mechanisms,” Int. J. Rob. Res., 13(1), pp. 1–15. [CrossRef]
Park, F. C. , 1995, “ Optimal Robot Design and Differential Geometry,” ASME J. Mech. Des., 117, pp. 87–92. [CrossRef]
Stocco, L. , Salcudean, S. E. , and Sassani, F. , 1997, “ Mechanism Design for Global Isotropy With Applications to Haptic Interfaces,” ASME Winter Annual Meeting, Dallas, TX, Nov. 15–17, Vol. 61, pp. 115–122.
Stocco, L. , Salcudean, S. E. , and Sassani, F. , 1998, “ Fast Constrained Global Minimax Optimization of Robot Parameters,” Robotica, 16(6), pp. 595–605. [CrossRef]
Gosselin, C. , and Angeles, J. , 1991, “ A Global Performance Index for the Kinematic Optimization of Robotic Manipulators,” ASME J. Mech. Des., 113(3), pp. 220–226. [CrossRef]
Gogu, G. , 2004, “ Structural Synthesis of Fully-Isotropic Translational Parallel Robots Via Theory of Linear Transformation,” Eur. J. Mech.-A/Solids, 23(2), pp. 1021–1039. [CrossRef]
Belfiore, N. , Verotti, M. , and Consorti, L. , 2010, “ Comparative Analysis of Isotropy Indices in RR and RRP Arms,” Int. J. Mech. Control, 11(1), pp. 3–12.
Liu, H. , Huang, T. , and Chetwynd, D. , 2011, “ A Method to Formulate a Dimensionally Homogeneous Jacobian of Parallel Manipulators,” IEEE Trans. Rob., 27(1), pp. 150–156. [CrossRef]
Belfiore, N. , Di Giamberardino, P. , Rudas, I. , and Verotti, M. , 2011, “ Isotropy in Any RR Planar Dyad Under Active Joint Stiffness Regulation,” Int. J. Mech. Control, 12(1), pp. 75–81.
Belfiore, N. P. , Verotti, M. , Di Giamberardino, P. , and Rudas, I. J. , 2012, “ Active Joint Stiffness Regulation to Achieve Isotropic Compliance in the Euclidean Space,” ASME J. Mech. Rob., 4(4), p. 041010. [CrossRef]
Albu-Schäffer, A. , Fischer, M. , Schreiber, G. , Schoeppe, F. , and Hirzinger, G. , 2004, “ Soft Robotics: What Cartesian Stiffness Can Obtain With Passively Compliant, Uncoupled Joints?,” IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, Sept. 28–Oct. 2, Vol. 4, pp. 3295–3301.
Petit, F. , and Albu-Schäffer, A. , 2011, “ Cartesian Impedance Control for a Variable Stiffness Robot Arm,” IEEE International Conference on Intelligent Robots and Systems, San Francisco, CA, Sept. 25–30, pp. 4180–4186.
Balucani, M. , Belfiore, N. , Crescenzi, R. , and Verotti, M. , 2011, “ The Development of a MEMS/NEMS-Based 3 D.O.F. Compliant Micro Robot,” Int. J. Mech. Control, 12(1), pp. 3–10.
Belfiore, N. P. , EmamiMeibodi, M. , Verotti, M. , Crescenzi, R. , Balucani, M. , and Nenzi, P. , 2013, “ Kinetostatic Optimization of a MEMS-Based Compliant 3 DOF Plane Parallel Platform,” IEEE 9th International Conference on Computational Cybernetics (ICCC 2013), Tihany, Hungary, July 8–10, pp. 261–266.
Verotti, M. , Crescenzi, R. , Balucani, M. , and Belfiore, N. , 2014, “ MEMS-Based Conjugate Surfaces Flexure Hinge,” ASME J. Mech. Des., 137(1), p. 012301. [CrossRef]
Cecchi, R. , Verotti, M. , Capata, R. , Dochshanov, A. , Broggiato, G. B. , Crescenzi, R. , Balucani, M. , Natali, S. , Razzano, G. , Lucchese, F. , Bagolini, A. , Bellutti, P. , Sciubba, E. , and Belfiore, N. P. , 2015, “ Development of Micro-Grippers for Tissue and Cell Manipulation With Direct Morphological Comparison,” Micromachines, 6(11), pp. 1710–1728. [CrossRef]
Belfiore, N. P. , and Di Benedetto, A. , 2000, “ Connectivity and Redundancy in Spatial Robots,” Int. J. Rob. Res., 19(12), pp. 1245–1261. [CrossRef]
Siciliano, B. , Sciavicco, L. , Villani, L. , and Oriolo, G. , 2008, Robotics: Modelling, Planning and Control, 1st ed., Springer, London.

Figures

Grahic Jump Location
Fig. 1

Isotropic compliance condition

Grahic Jump Location
Fig. 2

Nonisotropic compliance condition

Grahic Jump Location
Fig. 3

Three-link planar manipulator in three different configurations

Grahic Jump Location
Fig. 4

Flowchart representing the algorithm for the evaluation of the control gain ratios

Grahic Jump Location
Fig. 5

The workspace defined for θ1=0 and θ2,θ3∈[0,π] and the isotropic compliance subsets for the manipulator MA: in the dark zone there are no solutions, while, in the subsets in which solutions exist, the value of μ is proportional to the gradient bar

Grahic Jump Location
Fig. 6

The workspace defined for θ1=0 and θ2,θ3∈[0,π] and the isotropic compliance subsets for the manipulator MA: the dark zones are no-solution zones, while in the white zones the solutions do not verify condition (5). In the subsets verifying condition (5), the value of μc is proportional to the gradient bar.

Grahic Jump Location
Fig. 7

The workspace defined for θ1=0 and θ2,θ3∈[0,π] and the isotropic compliance subsets for the manipulator MB: in the dark zone there are no solutions, while, in the subsets in which solutions exist, the value of μ is proportional to the gradient bar

Grahic Jump Location
Fig. 8

The workspace defined for θ1=0 and θ2,θ3∈[0,π] and the isotropic compliance for the manipulator MB: the dark zones are no-solution zones, while in the white zones the solutions do not verify condition (5). In the subsets verifying condition (5), the value of μc is proportional to the gradient bar.

Grahic Jump Location
Fig. 9

Anthropomorphic RRR: semispherical surface subset in which isotropic compliance is verified, where the value of μ is proportional to the gradient bar

Grahic Jump Location
Fig. 10

Anthropomorphic RRR: in the white zones the solutions do not verify condition (5), while, in the subset verifying condition (5), the value of μc is proportional to the gradient bar

Grahic Jump Location
Fig. 11

RRP spatial manipulator: isotropic compliance subset, with a constant value of the control gain ratio μ

Grahic Jump Location
Fig. 12

RPP cylindrical manipulator: orthogonal cross section of the isotropic compliance subset, where the value of μ is proportional to the gradient bar

Grahic Jump Location
Fig. 13

RPP cylindrical manipulator: in the white zones the solutions do not verify condition (5), while, in the subset verifying condition (5), the value of μc is proportional to the gradient bar

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In