Lung-Wen, T., 1999, *Robot Analysis: The Mechanics of Serial and Parallel Manipulators*, John Wiley and Sons, New York, p. 25.

Verhoeven, R., Hiller, M., and Tadokoro, S., 1998, “Workspace of Tendon-Driven Stewart Platforms: Basics, Classification, Details on the Planar 2-DOF Class,” International Conference on Motion and Vibration Control MOVIC, Institute of Robotics, Zürich, Switzerland, Vol. 3, pp. 871–876.

Tadokoro, S., Matsushima, T., Murao, Y., Kohkawa, H., and Hiller, M., 2001, “A Parallel Cable-Driven Motion Base for Virtual Acceleration,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Maui, HI.

Gallina, P., and Rosati, G., 2002, “Manipulability of a Planar Wire Driven Haptic Device,” Mech. Mach. Theory, 37(2), pp. 215–228.

[CrossRef]Gosselin, C. M., and Barrette, G., 2001, “Kinematic Analysis of Planar Parallel Mechanisms Actuated With Cables,” Proceedings of Symposium on Mechanisms, Machines and Mechatronics, Quebec, Canada, pp. 41–42.

Sawodnya, O., Aschemannb, H., and Lahresc, S., 2002, “An Automated Gantry Crane as a Large Workspace Robot,” Control Eng. Pract., 10, pp. 1323–1338.

[CrossRef]Papachristou, A., Valsamos, H., and Dentsoras, A., 2010, “Optimal Initial Positioning of Excavators in Digging Processes,” Proc. Inst. Mech. Eng., Part 1224, pp. 835–844

[CrossRef].

Stentz, A., Bares, J., Singh, S., and Rowe, P., 1998, “A Robotic Excavator for Autonomous Truck Loading,” Proceedings of the IEEE/RSJ International Conference on Intelligent Robotic Systems.

Lorenc, S. J., Handlon, B. E., and Bernold, L. E., 2000, “Development of a Robotic Bridge Maintenance System,” Autom. Constr., 9, pp. 251–258.

[CrossRef]Kim, Y. S., Jung, M. H., Cho, Y. K., Lee, J., and Jung, U., 2007, “Conceptual Design and Feasibility Analyses of a Robotic System for Automated Exterior Wall Painting,” Int. J. Adv. Robot. Syst., 4, pp. 417–430.

Kershner, R., 1993, “The Number of Circles Covering a Set,” Am. J. Math., 61, pp. 665–671.

[CrossRef]Uhlery, C., and Wright, S. J., 2013, “Packing Ellipsoids With Overlap,” SIAM Review, 55, pp. 671–706

[CrossRef].

Karp, R. M., 1972, *Reducibility Among Combinatorial Problems, Complexity of Computer Computations*, Plenum, New York, pp. 85–103.

Fowler, R. J., Paterson, M. S., and Tanimoto, S. L., 1981, “Optimal Packing and Covering in the Plane are NP-Complete,” Inf. Process. Lett., 12(3), pp. 133–137.

[CrossRef]Melissen, J. B. M., and Schuur, P. C., 1996, “Improved Coverings of a Square With Six and Eight Equal Circles,” Electr. J. Combin., 3(1R), pp. 1–10.

Heppes, A., and Melissen, H., 1997, “Covering a Rectangle With Equal Circles,” Period. Math. Hung., 34, pp. 65–81.

[CrossRef]Melissen, J. B. M., and Schuur, P. C., 1997, “Covering a Rectangle With Six and Seven Circles,” Discrete Appl. Math., 99, pp. 149–156.

[CrossRef]Nurmela, K. J., 2000, “Conjecturally Optimal Coverings of an Equilateral Triangle With up to 36 Equal Circles,” Exp. Math., 9(2), pp. 241–250.

[CrossRef]Bravais, A., 1866, “Mémoire sur les systèmes formés par des points distribués regulièrement sur un plan ou dans l'espace,” J. Ec. Polytech. (Paris), 19, pp. 1–128.

Goldberg, D. E., 1989, *Genetic Algorithms in Search, Optimization & Machine Learning*, Addison-Wesley, Boston, MA.

Conn, A. R., Gould, N. I. M., and Toint, P. L., 1991, “A Globally Convergent Augmented Lagrangian Algorithm for Optimization With General Constraints and Simple Bounds,” SIAM J. Numer. Anal., 28, pp. 545–572.

[CrossRef]Conn, A. R., Gould, N. I. M., and Toint, P. L., 1997, “A Globally Convergent Augmented Lagrangian Barrier Algorithm for Optimization With General Inequality Constraints and Simple Bounds,” Math. Comput., 66, pp. 261–288.

[CrossRef]Pratt, W. K., 1991, *Digital Image Processing*, John Wiley & Sons, Inc., New York, p. 633.