0
Research Papers

Reconfiguration Manipulability Analyses for Redundant Robots

[+] Author and Article Information
Tongxiao Zhang

College of Information and
Electrical Engineering,
China University of Mining and Technology,
Jiangsu, Xuzhou 221116, China
e-mail: cheshenztx@126.com

Mamoru Minami

Graduate School of Natural
Science and Technology,
Okayama University 3-1-1 Tsushimanaka,
Okayama 7008530, Japan
e-mail: minami@sys.okayama-u.ac.jp

Osami Yasukura

Graduate School of Engineering,
University of Fukui,
Fukui 9108507, Japan
e-mail: yasukura@apphy.u-fukui.ac.jp

Wei Song

School of Mechatronics
Engineering and Automation,
Shanghai University,
149 Yanchang Road,
Shanghai 200072, China
e-mail: song_wei@shu.edu.cn

Contributed by the Mechanisms and Robotics Committee of ASME for publication in the JOURNAL OF MECHANISMS AND ROBOTICS. Manuscript received June 25, 2010; final manuscript received November 2, 2011; published online July 16, 2013. Assoc. Editor: Federico Thomas.

J. Mechanisms Robotics 5(4), 041001 (Jul 16, 2013) (16 pages) Paper No: JMR-10-1085; doi: 10.1115/1.4024727 History: Received June 25, 2010; Revised November 02, 2011

This paper is concerned with a concept of reconfiguration manipulability inspired from manipulability. The reconfiguration manipulability represents a shape-changeability of each intermediate link when a prior end-effector task is given. Through analyses of reconfiguration matrices, we propose a method to judge whether the plural shape-changing subtasks can be executed simultaneously or not. Then the sufficient conditions guaranteeing sustainability of reconfiguration manipulability space are presented, which are the conditions for keeping the reconfiguration manipulability as high as possible under the prior end-effector task. Further, we confirm the proposed analyses can be useful practically for evaluating the realistic manipulator's configurations and structures.

Copyright © 2013 by ASME
Your Session has timed out. Please sign back in to continue.

References

Yoshikawa, T., 1984, “Measure of Manipulability for Robot Manipulators,” J. Rob. Soc. Jpn., 2(1), pp. 63–71. (in Japanese). [CrossRef]
Yoshikawa, T., 1985, “Manipulability of Robot Mechanisms,” Int. J. Robot. Res., 4(2), pp. 3–9. [CrossRef]
Maciejewski, A. A., and Klein, C. A., 1985, “Obstacle Avoidance for Kinematically Redundant Manipulators in Dynamically Varying Environments,” Int. J. Robot. Res., 4(3), pp. 109–117. [CrossRef]
Nakamura, Y., Hanafusa, H., and Yoshikawa, T., 1987, “Task-Priority Based Redundancy Control of Robot Manipulators,” Int. J. Robot. Res., 6(2), pp. 3–15. [CrossRef]
Lee, S., 1989, “Dual Redundant Arm Configuration Optimization With Task-Oriented Dual Arm Manipulability,” IEEE Trans. Rob. Autom., 5(1), pp. 78–97. [CrossRef]
Chiacchio, P., Chiaverini, S., Sciavicco, L., and Siciliano, B., 1991, “Global Task Space Manipulability Ellipsoids for Multiple-Arm System,” IEEE Trans. Rob. Autom., 7(5), pp. 678–685. [CrossRef]
Huang, J., Yamada, D., Nakamura, Y., Hara, M., and Yabuta, T., 2009, “Cooperative Impedance Control of a Finger-Arm Robot by Regulating Finger's Manipulability,” J. Syst. Des. Dyn., 3(5), pp. 756–767.
Bicchi, A., Melchiorri, C., and Balluchi, D., 1995, “On the Mobility and Manipulability of General Multiple Limb Robots,” IEEE Trans. Rob. Autom., 11(2), pp. 215–228. [CrossRef]
Kawasaki, H., and Mouri, T., 2007, “Design and Control of Five-Fingered Haptic Interface Opposite to Human Hand,” IEEE Trans. Rob. Autom., 23(5), pp. 909–918. [CrossRef]
Koeppe, R., and Yoshikawa, T., 1997, “Dynamic Manipulability Analysis of Compliant Motion,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Grenoble, Vol. 3, pp. 1472–1478.
Yoshikawa, T., 1985, “Dynamic Manipulability of Robot Manipulators,” IEEE Int. Conf. Rob. Autom., 2, pp. 1033–1038.
Chiacchio, P., 2000, “A New Dynamic Manipulability Ellipsoid for Redundant Manipulators,” Robotica, 18(4), pp. 381–387. [CrossRef]
Kurazume, R., and Hasegawa, T., 2002, “Impedance Matching for Free Flying Robots,” Proceedings of the 20th Annuual Conference Robotics Society of Japan, Paper No. 3J16. (in Japanese).
Kurazume, R., and Hasegawa, T., 2006, “A New Index of Serial-Link Manipulator Performance Combining Dynamic Manipulability and Manipulating Force Ellipsoid,” IEEE Trans. Rob. Autom., 22(5), pp. 1022–1028. [CrossRef]
Bowling, A., and Khatib, O., 2005, “The Dynamic Capability Equations: A New Tool for Analyzing Robotic Manipulator Performance,” IEEE Trans. Rob. Autom., 21(1), pp. 115–123. [CrossRef]
Shugen, M., and Watanabe, M., 2000, “Minimum Time Path-Tracking Control of Redundant Manipulators,” International Conference on Intelligent Robots and Systems, Takamatsu, 1, pp. 27–32.
Jamisola, R. S.Jr., Maciejewski, A. A., and Roberts, R. G., 2006, “Failure-Tolerant Path Planning for Kinematically Redundant Manipulators Anticipating Locked-Joint Failures,” IEEE Trans. Rob. Autom., 22(4), pp. 603–612. [CrossRef]
Ahuactzin, J. M., and Gupta, K. K., 1999, “The Kinematic Roadmap: A Motion Planning Based Global Approach for Inverse Kinematics of Redundant Robots,” IEEE Trans. Rob. Autom., 15(4), pp. 653–669. [CrossRef]
Glass, K., Colbaugh, R., Lim, D., and Seraji, H., 1995, “Real-Time Collision Avoidance for Redundant Manipulators,” IEEE Trans. Rob. Autom., 11, pp. 448–457. [CrossRef]
Seraji, H., and Bon, B., 1999, “Real-Time Collision Avoidance for Position-Controlled Manipulators,” IEEE Trans. Rob. Autom., 15(4), pp. 670–677. [CrossRef]
Zlajpah, L., and Nemec, B., 2002, “Kinematic Control Algorithms for On-Line Obstacle Avoidance for Redundant Manipulator,” International Conference on Intelligent Robots and Systems, Lausanne, Vol. 2, pp. 1898–1903.
Lee, K.-K., and Buss, M., 2007, “Obstacle Avoidance for Redundant Robots Using Jacobian Transpose Method,” International Conference on Intelligent Robots and Systems, San Diego, pp. 3509–3514.
Marani, G., and Jinhyun, K., 2002, “A Real-Time Approach for Singularity Avoidance in Resolved Motion Rate Control of Robotic Manipulator,” Proceedings of IEEE/RSJ International Conference on Robotics and Automation, Washington, Vol. 2, pp. 1973–1978.
Minami, M., and Takahara, M., 2003, “Avoidance Manipulability for Redundant Manipulators,” IEEE/ASME International Conference on Advanced Intelligent Mechatronics, No. 140, pp. 314–319.
Siciliano, B., and Slotine, J. J. E., 1991, “A General Framework for Managing Multiple Tasks in Highly Redundant Robotic Systems,” Fifth International Conference on Advanced Robotics, Vol. 2, pp. 1211–1216.
Tanaka, H., Minami, M., and Mae, Y., 2005, “Trajectory Tracking of Redundant Manipulators Based on Avoidance Manipulability Shape Index,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, pp. 1892–1897.
Ikeda, K., Tanaka, H., Zhang, T., Minami, M., and Mae, Y., 2006, “On-line Optimization of Avoidance Ability for Redundant Manipulator,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, pp. 592–597.
Zhang, T., Minami, M., and Song, W., 2007, “Multi-Preview Configuration Control for Redundant Manipulator by Future Reachability Evaluation,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, SanDiego, pp. 3503–3508.
Yoshikawa, T., 1990, Foundations of Robotics: Analysis and Control, MIT, MIT Press, Cambridge, MA.

Figures

Grahic Jump Location
Fig. 1

Manipulability ellipsoids and reconfiguration manipulability ellipsoids

Grahic Jump Location
Fig. 2

Obstacle avoidance of intermediate links

Grahic Jump Location
Fig. 3

Flow chart of judgment of reconfiguration possibility

Grahic Jump Location
Fig. 5

Shape 1 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg,q2 = -90 deg,q3 = 0 deg,q4 = 90 deg,q5 = 0 deg,q6 = -90 deg,q7 = 90 deg;l0 = 0.2m,l1 = 0.115m,l2 = 0.315m,l3 = 0.135m,l4 = 0.261m,l5 = 0.239m,l6 = 0.3m,l7 = 0.1m)

Grahic Jump Location
Fig. 6

Shape 2 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg, q2 = -120 deg, q3 = 0 deg, q4 =  deg,q5 = 0 deg,q6 = -120 deg,q7 = 120 deg;l0 = 0.2m,l1 = 0.115m,l2 = 0.315m, l3 = 0.135m, l4 = 0.261m, l5 = 0.239m, l6 = 0.3m,l7 = 0.1m)

Grahic Jump Location
Fig. 7

Shape 3 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg,q2 =-40 deg,q3 = 0 deg,q4 = 40 deg,q5 = 0 deg,q6 = -40 deg,q7 = 40 deg;l0 = 0.2m,l1 = 0.115m,l2 = 0.315m,l3 = 0.135m,l4 = 0.261m,l5 = 0.239m,l6 = 0.3m,l7 = 0.1m)

Grahic Jump Location
Fig. 8

Shape 4 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg,q2 = -90 deg,q3 = 0 deg,q4 = 90 deg,q5 = 0 deg,q6 = -90 deg,q7 = 90 deg;l0 = 0.2m,l1 = 0.115m,l2 = 0.315m,l3 = 0.135m,l4 = 0.261m,l5 = 0.239m,l6 = 0.3m,l7 = 0.3m)

Grahic Jump Location
Fig. 9

Shape 5 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg,q2 = -90 deg,q3 = 0 deg,q4 = 90 deg,q5 = 0 deg,q6 = -90 deg,q7 = 90 deg;l0 = 0.2m,l1 = 0.115m,l2 = 0.315m,l3 = 0.135m,l4 = 0.261m,l5 = 0.239m,l6 = 0.3m,l7 = 0.05m)

Grahic Jump Location
Fig. 10

Shape 6 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg,q2 = -90 deg,q3 = 0 deg,q4 = 90 deg,q5 = 0 deg,q6 = -90 deg,q7 = 90 deg;l0 = 0.2m,l1 = 0.115m,l2 = 0.315m,l3 = 0.135m,l4 = 0.261m,l5 = 0.239m,l6 = 0.5m,l7 = 0.1m)

Grahic Jump Location
Fig. 11

Shape 7 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg,q2 = -90 deg,q3 = 0 deg,q4 = 90 deg,q5 = 0 deg,q6 = -90 deg,q7 = 90 deg;l0 = 0.2m,l1 = 0.115m,l2 = 0.315m,l3 = 0.135m,l4 = 0.261m,l5 = 0.239m,l6 = 0.1m,l7 = 0.1m)

Grahic Jump Location
Fig. 12

Shape 8 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg,q2 = -90 deg,q3 = 0 deg,q4 = 90 deg,q5 = 0 deg,q6 = -90 deg,q7 = 90 deg;l0 = 0.2m,l1 = 0.115m,l2 = 0.315m,l3 = 0.135m,l4 = 0.561m,l5 = 0.239m,l6 = 0.3m,l7 = 0.1m)

Grahic Jump Location
Fig. 13

Shape 9 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg,q2 = -90 deg,q3 = 0 deg,q4 = 90 deg,q5 = 0 deg,q6 = -90 deg,q7 = 90deg; l0 = 0.2m,l1 = 0.115m,l2 = 0.315m,l3 = 0.135m, l4 = 0.161m, l5 = 0.239m, l6 = 0.3m,l7 = 0.1m)

Grahic Jump Location
Fig. 14

Shape 10 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg,q2 = -90 deg,q3 = 0 deg,q4 = 90 deg,q5 = 0 deg,q6 = -90 deg,q7 = 90 deg;l0 = 0.2m,l1 = 0.115m,l2 = 0.615m,l3 = 0.135m,l4 = 0.261m,l5 = 0.239m,l6 = 0.3m,l7 = 0.1m)

Grahic Jump Location
Fig. 15

Shape 11 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg,q2 = -90 deg,q3 = 0 deg,q4 = 90 deg,q5 = 0 deg,q6 = -90 deg,q7 = 90 deg;l0 = 0.2m,l1 = 0.115m,l2 = 0.115m,l3 = 0.135m,l4 = 0.261m,l5 = 0.239m,l6 = 0.3m,l7 = 0.1m)

Grahic Jump Location
Fig. 16

Shape 12 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg,q2 = -90 deg,q3 = 0 deg,q4 = 90 deg,q5 = 0 deg,q6 = -90 deg,q7 = 90 deg;l0 = 0.5m,l1 = 0.115m,l2 = 0.315m,l3 = 0.135m,l4 = 0.261m,l5 = 0.239m,l6 = 0.3m,l7 = 0.1m)

Grahic Jump Location
Fig. 17

Shape 13 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg,q2 = -90 deg,q3 = 0 deg,q4 = 90 deg,q5 = 0 deg,q6 = -90 deg,q7 = 90 deg;l0 = 0.1m,l1 = 0.115m,l2 = 0.315m,l3 = 0.135m,l4 = 0.261m,l5 = 0.239m,l6 = 0.3m,l7 = 0.1m)

Grahic Jump Location
Fig. 18

Shape 14 of PA11 and reconfiguration manipulability ellipsoids (q1 = 0 deg,q2 = -90 deg,q3 = 0 deg,q4 = 90 deg,q5 = 0 deg, q6 = -90 deg, q7 = 0 deg;l0 = 0.2m,l1 = 0.115m,l2 = 0.315m,l3 = 0.135m,l4 = 0.261m,l5 = 0.239m,l6 = 0.3m,l7 = 0.1m)

Grahic Jump Location
Fig. 19

Structure descriptions of two assumptions in two-dimensional space

Grahic Jump Location
Fig. 20

4-link manipulator in two-dimensional space

Grahic Jump Location
Fig. 21

Manipulability ellipsoids

Grahic Jump Location
Fig. 22

Reconfiguration manipulability ellipsoids

Grahic Jump Location
Fig. 23

Manipulability ellipsoid of the second link

Grahic Jump Location
Fig. 24

Reconfiguration manipulability ellipsoid of the second link

Grahic Jump Location
Fig. 25

Manipulability measure/reconfiguration manipulability measure

Grahic Jump Location
Fig. 26

Stoppage operation process 1

Grahic Jump Location
Fig. 27

Stoppage operation process 2

Grahic Jump Location
Fig. 28

Humanoid robot with visual servoing system

Tables

Errata

Discussions

Some tools below are only available to our subscribers or users with an online account.

Related Content

Customize your page view by dragging and repositioning the boxes below.

Related Journal Articles
Related eBook Content
Topic Collections

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In