Inonu, I., and Wigner, E., 1953, “On the Contraction of Groups and Their Representations,” Proc. Natl. Acad. Sci., U.S.A., 39(6), pp. 510–524.

[CrossRef]Saletan, E., 1961, “Contraction of Lie Groups,” J. Math. Phys., 2(1), pp. 1–21.

[CrossRef]McCarthy, J. M., 1983, “Planar and Spatial Rigid Body Motion as Special Cases of Spherical and 3-Spherical Motion,” ASME J. Mech., Transm., Autom., 105, pp. 569–575.

[CrossRef]Etzel, K., and McCarthy, J. M., 1996, “A Metric for Spatial Displacements Using Biquaternions on SO(4),” IEEE International Conference on Robotics and Automation.

Etzel, K., and McCarthy, J. M., 1996, “Spatial Motion Interpolation in an Image Space of SO(4),” Proceedings of 1996 ASME Mechanisms Conference, Paper No. 96-DETC/MECH-1164.

Ge, Q. J., 1998, “On the Matrix Realization of the Theory of Biquaternions,” ASME J. Mech. Des., 120(3), pp. 404–407.

[CrossRef]Clifford, W. K., 1873, “Preliminary Sketch of Biquaternions,” Proc. London Math. Soc., 4, pp. 381–395.

[CrossRef]Tse, D. M., and Larochelle, P. M., 2000, “Approximating Spatial Locations With Spherical Orientations for Spherical Mechanism Design,” ASME J. Mech. Des., 122(4), pp. 457–463.

[CrossRef]Larochelle, P., Murray, A., and Angeles, J., 2007, “A Distance Metric for Finite Sets of Rigid-Body Displacements via the Polar Decomposition,” ASME J. Mech. Des., 129(8), pp. 883–886.

[CrossRef]Larochelle, P., 2006, “A Polar Decomposition Based Displacement Metric for a Finite Region of SE(n),” *Advances in Robot Kinematics* (ARK), B. R. J.Lenarčič, ed., Springer Verlag, The Netherlands, pp. 33–40.

Larochelle, P., and Murray, A., 2005, “Projection Metrics for Rigid-Body Displacements,” 2005 ASME International Design Engineering Technical Conferences.

Belta, C., and Kumar, V., 2002, “An SVD-Based Projection Method for Interpolation on SE(3),” IEEE Trans. Rob. Autom., 18(3), pp. 334–345.

[CrossRef]Eberharter, J. K., and Ravani, B., 2004, “Local Metrics for Rigid Body Displacements,” ASME J. Mech. Des., 126(5), pp. 805–812.

[CrossRef]Study, E., 1903, *Die Geometrie der Dynamen*, Verlag Teubner, Leipzig.

Shoemake, K., and Duff, T., 1992, “Matrix Animation and Polar Decomposition,” Graphics Interface’92, pp. 258–264.

Yang, A. T., 1963, “Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms,” Ph.D. dissertation, Columbia University, New York.

Yang, A., and Freudenstein, F., 1964, “Application of Dual-Number and Quaternion Algebra to the Analysis of Spatial Linkages,” ASME J. Appl. Mech (Ser. E), 31, pp. 300–308.

[CrossRef]Radavelli, L., Simoni, R., De Pieri, E., and Martins, D., 2012, “A Comparative Study of the Kinematics of Robots Manipulators by Denavit-Hartenberg and Dual Quaternion,” Mecánica Computacional, Multi-Body Systems, Vol. **XXXI**(15), A. Cardona, P. H. Kohan, R. D. Quinteros, M. A. Storti, eds, Salta, Argentina, 13–16 November 2012, pp. 2833–2848.

Perez, A., and McCarthy, J. M., 2004, “Dual Quaternion Synthesis of Constrained Robotic Systems,” ASME J. Mech. Des., 126(3), pp. 425–435.

[CrossRef]Kavan, L., Collins, S., Zara, J., and O'Sullivan, C., 2008, “Geometric Skinning With Approximate Dual Quaternion Blending,” ACM Trans. Graph., 27(4), pp. 1–23.

[CrossRef]Ma, K.-x., and Wang, H.-n., 2013, “Dual Quaternion Relative Position and Attitude Estimation Algorithm of Close Formation Flight Based on Vision,” Syst. Eng. Electron., 35(2), pp. 391–396.

[CrossRef]Yuanxin, W., Xiaoping, H., Meiping, W., and Dewen, H., 2006, “Strapdown Inertial Navigation Using Dual Quaternion Algebra: Error Analysis,” IEEE Trans. Aerosp. Electron. Syst., 42(1), pp. 259–266.

[CrossRef]Pham, H.-L., Perdereau, V., Adorno, B. V., and Fraisse, P., 2010, “Position and Orientation Control of Robot Manipulators Using Dual Quaternion Feedback,” IROS'10 IEEE/RSJ International Conference on Intelligent Robots and Systems.

Wang, X., and Yu, C., 2011, “Unit-Dual-Quaternion-Based PID Control Scheme for Rigid-Body Transformation,” Proceedings of 18th World Congress International Federation of Automatic Control, pp. 9296–9301.

Han, D.-P., Wei, Q., and Li, Z.-X., 2008, “Kinematic Control of Free Rigid Bodies Using Dual Quaternions,” Int. J. Autom. Comput., 5(3), pp. 319–324.

[CrossRef]Demir, S., 2007, “Matrix Realization of Dual Quaternionic Electromagnetism,” Cent. Eur. J. Phys., 5(4), pp. 487–506.

[CrossRef]Coxeter, H., 1965, *Non-Euclidean Geometry*, University of Toronto Press, Toronto.

Ravani, B., and Roth, B., 1983, “Motion Synthesis Using Kinematic Mappings,” Trans. ASME J. Mech. Transm. Autom. Des., 105(3), pp. 460–467.

[CrossRef]Angeles, J., 2006, “Is There a Characteristic Length of a Rigid-Body Displacement?,” Mech. Mach. Theory, 41(8), pp. 884–896.

[CrossRef]Larochelle, P., and McCarthy, J. M., 1995, “Planar Motion Synthesis Using an Approximate Bi-Invariant Metric,” ASME J. Mech. Des., 117(4), pp. 646–651.

[CrossRef]Larochelle, P., and McCarthy, J. M., 1994, “Designing Planar Mechanisms Using a Bi-Invariant Metric in the Image Space of SO(3),” Proceedings of the 1994 ASME Design Engineering Technical Conferences, Vol. DE-70, ASME Press, pp. 221–228.

Bottema, O., and Roth, B., 1979, *Theoretical Kinematics*, North Holland, Amsterdam.

McCarthy, J. M., 1986, “The Generalization of Line Trajectories in Spatial Kinematics to Trajectories of Great Circles on a Hyper- Sphere,” ASME J. Mech., Transm., Autom., 108(1), pp. 60–64.

[CrossRef]McCarthy, J. M., 1990, *Introduction to Theoretical Kinematics*, MIT, Cambridge, Mass.