Black, M., and Jepson, A., 1998, “A Probabilistic Framework for Matching Temporal Trajectories: Condensation-Based Recognition of Gestures and Expressions,” "*Proceedings of the European Conference on Computer Vision (ECCV)*", Springer-Verlag, Freiburg, Germany, pp. 900–924.

Rao, C., Yilmaz, A., and Shah, M., 2002, “View-Invariant Representation and Recognition of Actions,” Int. J. Comput. Vis., 50 (2), pp. 203–226.

[CrossRef]Psarrou, A., Gong, S., and Walter, M., 2002, “Recognition of Human Gestures and Behaviour Based on Motion Trajectories,” Image Vis. Comput., 20 , pp. 349–358.

[CrossRef]Yamada, Y., Umetani, Y., Daitoh, H., and Sakai, T., 1999, “Construction of a Human/Robot Coexistence System Based on a Model of Human Will—Intention and Desire,” International Conference on Robotics and Automation , Detroit, MI, pp. 2861–2867.

Aleotti, J., and Caselli, S., 2005, “Trajectory Clustering and Stochastic Approximation for Robot Programming by Demonstration,” "*Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems*", Edmonton, Canada, pp. 1029–1034.

Friedrich, H., Münch, S., and Dillmann, R., 1996, “Robot Programming by Demonstration (RPD): Supporting the Induction by Human Interaction,” Mach. Learn., 23 , pp. 163–189.

Frenet, F., 1847, “Sur les courbes à couble courbure,” Ph.D. thesis, Toulouse, France.

Wu, S., and Li, Y., 2008, “On Signature Invariants for Effective Motion Trajectory Recognition,” Int. J. Robot. Res., 27 (8), pp. 895–917.

[CrossRef]Chasles, M., 1830, “Note sur les propriétés générales du système de deux corps semblables entr’eux et placés d’une manière quelconque dans l’espace; et sur le déplacement fini ou in infiniment petit d’un corps solide libre,” Bulletin des Sciences Mathématiques, Astronomiques, Physiques et Chimiques, 14 , pp. 321–326.

Ceccarelli, M., 1995, “Screw Axis Defined by Giulio Mozzi in 1763,” Ninth World Congress IFToMM , Milano, Italy, pp. 3187–3190.

Mozzi, G., 1763, “Discorso Matematico sopra il Rotamento Momentaneo dei Corpi,” Stamperia del Donato Campo, Napoli.

Skreiner, M., 1966, “A Study of the Geometry and the Kinematics of Instantaneous Spatial Motion,” J. Mech., 1 , pp. 115–143.

[CrossRef]Veldkamp, G. R., 1969, “Acceleration Axes and Acceleration Distribution in Spatial Motion,” ASME J. Eng. Ind., 91 , pp. 147–151.

Skreiner, M., 1969, “Discussion on “Acceleration Axes and Acceleration Distribution in Spatial Motion”,” ASME J. Eng. Ind., 13 , pp. 150–151.

Bokelberg, E. H., Hunt, K. H., and Ridley, P. R., 1992, “Spatial Motion—I. Points of Inflection and the Differential Geometry of Screws,” Mech. Mach. Theory, 27 (1), pp. 1–15.

[CrossRef]Phillips, J., and Hunt, K., 1964, “On the Theorem of Three Axes in the Spatial Motion of Three Bodies,” J. Appl. Sci., 15 (4), pp. 267–287.

Angeles, J., 1986, “Automatic Computation of the Screw Parameters of Rigid-Body Motions. Part II: Infinitesimally-Separated Positions,” ASME J. Dyn. Syst., Meas., Control, 108 , pp. 39–43.

[CrossRef]Angeles, J., 1987, “Computation of Rigid-Body Angular Acceleration From Point-Acceleration Measurements,” ASME J. Dyn. Syst., Meas., Control, pp. 124–127.

[CrossRef]Angeles, J., 1988, "*Rational Kinematics*", Springer, New York.

Sommer, H. J., 1992, “Determination of First and Second Order Instant Screw Parameters From Landmark Trajectories,” ASME J. Mech. Des., 114 , pp. 274–282.

[CrossRef]Page, A., 2009, “Experimental Analysis of Rigid Body Motion. A Vector Method to Determine Finite and Infinitesimal Displacements From Point Coordinates,” ASME J. Mech. Des., 131 , p. 031005.

[CrossRef]Fenton, R. G., and Willgoss, R. A., 1990, “Comparison of Methods for Determining Screw Parameters of Infinitesimal Rigid Body Motion From Position and Velocity Data,” ASME J. Dyn. Syst., Meas., Control, 112 , pp. 711–716.

[CrossRef]Veldkamp, G. R., 1967, “Canonical Systems and Instantaneous Invariants in Spatial Kinematics,” J. Mech., 2 , pp. 329–333.

[CrossRef]Bottema, O., and Roth, B., 1979, "*Theoretical Kinematics*" (Series in Applied Mathematics and Mechanics ), Vol. 24 , North-Holland, Amsterdam, the Netherlands.

Roth, B., 2005, “Finding Geometric Invariants From Time-Based Invariants for Spherical and Spatial Motions,” ASME J. Mech. Des., 127 , pp. 227–231.

[CrossRef]Kirson, Y., and Yang, A., 1978, “Instantaneous Invariants of Three-Dimensional Kinematics,” ASME J. Appl. Mech., 45 , pp. 409–414.

McCarthy, J., and Roth, B., 1982, “Instantaneous Properties of trajectories Generated by Planar, Spherical, and Spatial Rigid Body Motions,” ASME J. Mech. Des., 104 , pp. 39–51.

McCarthy, J., and Ravani, B., 1986, “Differential Kinematics of Spherical and Spatial Motions Using Kinematic Mapping,” ASME J. Appl. Mech., 53 , pp. 15–22.

Lee, C., Yang, A., and Ravani, B., 1993, “Coordinate System Independent Form of Instantaneous Invariants in Spatial Kinematics,” ASME J. Mech. Des., 115 , pp. 946–952.

[CrossRef]Stachel, H., 2000, “Instantaneous Spatial Kinematics and the Invariants of the Axodes,” "*Proceedings of the Ball 2000 Symposium*", Cambridge University Press, London, pp. 1–14.

Denavit, J., and Hartenberg, R. S., 1955, “A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices,” ASME J. Appl. Mech., 23 , pp. 215–221.

Skreiner, M., 1967, “On the Points of Inflection in General Spatial Motion,” J. Mech., 2 , pp. 429–433.

[CrossRef]Paul, R. P., 1981, "*Robot Manipulators: Mathematics, Programming, and Control*", MIT, Cambridge, MA.