Dai, J. S., 2006, “An Historical Review of the Theoretical Development of Rigid Body Displacements From Rodrigues Parameters to the Finite Twist, Mech. Mach. Theory, 41 (1), pp. 41–52.

[CrossRef]Altmann, S. L., 1986, "*Rotations, Quaternions and Double Groups*", Clarendon Press, Oxford, England.

Cayley, A., 1875, “On Three-Bar Motion,” Proc. London Math. Soc., VII , pp. 136–166.

[CrossRef]Bisshopp, K. E., 1969, “Rodrigues’ Formula and the Screw Matrix,” Trans. ASME J. Eng. Ind., 91 , pp. 179–185.

[CrossRef]Bottema, O., and Roth, B., 1979, "*Theoretical Kinematics*", North-Holland Series in Applied Mathematics and Mechanics, North-Holland, Amsterdam.

Clifford, W. K., 1873, “Preliminary Sketch of Biquaternions,” Proc. London Math. Soc., 4 (64/65), pp. 381–395.

[CrossRef]Selig, J., 2010, “Quadratic Constraints on Rigid-Body Displacements,” Trans. ASME J. Mech. Rob., 2 (4), p. 041009.

[CrossRef]Dai, J. S., 2012, "*Screw Algebra and Kinematics Approaches for Mechanisms and Robotics*", Springer, London.

Dimentberg, F. M., 1947, “Finite Displacements of a Three-Dimensional Four-Element Chain With Cylindrical Pairs and Cases of Passive Coupling (Konechnyye peremeshcheniya prostranstvennogo chetyrekhzvennika s tsilindricheskimi parami I sluchai passivnykh svyazey),” PMM, 11 (6), pp. 10–19.

Denavit, J., and Hartenberg, R. S., 1955, “A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices,” Trans. ASME J. Appl. Mech., 22 , pp. 215–221.

Yang, A. T., and Freudenstein, F., 1964, “Application of Dual-Number Quaternion Algebra to the Analysis of Spatial Mechanisms,” Trans ASME J. Appl. Mech., 86 (2), pp. 300–309.

[CrossRef]Woo, L., and Freudenstein, F., 1970, “Application of Line Geometry to Theoretical Kinematics and the Kinematic Analysis of Mechanical Systems,” J. Mech., 5 , pp. 417–460.

[CrossRef]Yuan, M. S. C., and Freudenstein, F., 1971, “Kinematics Analysis of Spatial Mechanisms by Means of Screw Coordinates, Part I—Screw Coordinates,” ASME J. Eng. Ind., 93 , pp. 61–66.

[CrossRef]Bottema, O., and Roth, B., 1979, “Theoretical Kinematics, "*North-Holland Series in Applied Mathematics and Mechanics*", North-Holland, Amsterdam.

Pennock, G. R., and Yang, A. T., 1985, Application of Dual-Number Matrices to the Inverse Kinematics Problem of Robot Manipulators,” Trans. ASME J. Mech., Transm., Autom. Des., 107 , pp. 201–208.

[CrossRef]Ravani, B., and Roth, B.1984, “Mappings of Spatial Kinematics,” Trans. ASME J. Mech. Transm. Autom. Des.106 (3), pp. 341–347.

[CrossRef]McCarthy, J. M., 1986, “Dual Orthogonal Matrices in Manipulator Kinematics,” Int. J. Rob. Res., 5 (2), pp. 45–51.

[CrossRef]McCarthy, J. M., 1990, "*An Introduction to Theoretical Kinematics*", The MIT Press, London.

Rooney, J., 1977, “A Survey of Representations of Sspatial Rotation About a Fixed Point,” Environ. Plann. B, 4 , pp. 185–210.

[CrossRef]Rooney, J., 1978, “A Comparison of Representations of General Spatial Screw Displacement,” Environ. Plann. B, 5 , pp. 45–88.

[CrossRef]Samuel, A. E., McAree, P. R., and Hunt, K. H., 1991, “Unifying Screw Geometry and Matrix Transformations,” Int. J. Rob. Res., 10 (5), pp. 454–472.

[CrossRef]Dai, J. S., Holland, N., and Kerr, D. R., 1995, “Finite Twist Mapping and Its Application to Planar Serial Manipulators With Revolute Joints,” J. Mech. Eng. Sci., 209 (C3), pp. 263–272.

Parkin, I. A., 1992, “A Third Conformation With the Screw Systems,” Mech. Mach. Theory, 27 , pp. 177–188.

[CrossRef]Hunt, K. H., and Parkin, I. A., 1995, “Finite Displacements of Points, Planes, and Lines via Screw Theory,” Mech. Mach. Theory, 30 , pp. 177–192.

[CrossRef]Huang, C., and Roth, B., 1994, “Analytic Expressions for the Finite Screw Systems,” Mech. Mach. Theory, 29 , pp. 207–222.

[CrossRef]Dai, J. S., and Rees Jones, J., 2002, “Null Space Construction Using Cofactors from a Screw Algebra Context,” Proc. R. Soc., London A, 458 (2024), pp. 1845–1866.

[CrossRef]Dai, J. S., and Rees Jones, J., 2003, “A Linear Algebraic Procedure in Obtaining Reciprocal Screw Systems,” J. Rob. Syst., 20 (7), pp. 401–412.

[CrossRef]Huang, C., Kuo, W., and Ravani, B., 2010, “On the Regulus Associated With the General Displacement of a Line and Its Application in Determining Displacement Screws,” Trans. ASME J. Mech. Rob., 2 (4), p. 041013.

[CrossRef]Zarrouk, D., and Shoham, M., 2011, “A Note on the Screw Triangle,” Trans. ASME J. Mech. Rob., 3 (1), p. 014502.

[CrossRef]Perez-Gracia, A., 2011, “Synthesis of Spatial RPRP Closed Linkage for a Given Screw System,” Trans. ASME J. Mech. Rob., 3 (2), p. 021009.

[CrossRef]Dai, J. S., Huang, Z., and Lipkin, H., 2006, “Mobility of Overconstrained Parallel Mechanisms,” Special Supplement on Spatial Mechanisms and Robot Manipulators, Trans. ASME J. Mech. Des., 128 (1), pp. 220–229.

[CrossRef]Yu, J., Li, S., Su, H. J., and Culpepper, M. L., 2011, “Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms,” Trans. ASME J. Mech. Rob., 3 (3), p. 031008.

[CrossRef]Su, H. J., 2011, “Mobility Analysis of Flexure Mechanisms via Screw Algebra, Trans. ASME J. Mech. Rob., 3 (4), p. 041010.

[CrossRef]Gan, D. M., Dai, J. S., and Liao, Q. Z., 2010, “Constraint Analysis on Mobility Change in the Metamorphic Parallel Mechanism,” Mech. Mach. Theory, 45 , pp. 1864–1876.

[CrossRef]Gan, D. M., Dai, J. S., and Galdwell, D. G., 2011, “Constraint-Based Limb Synthesis and Mobility-Change-Aimed Mechanism Construction,” Trans. ASME J. Mech. Des., 133 (5), p. 051001.

[CrossRef]Zhang, K., Dai, J. S., and Fang, Y., 2010, “Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism,” Trans. ASME J. Mech. Rob., 132 (12), p. 121001.

[CrossRef]Liu, H., Huang, T., and Chetwynd, D. G., 2011, “A General Approach for Geometric Error Modeling of Lower Mobility Parallel Manipulators,” Trans. ASME J. Mech. Rob., 3 (2), p. 021013.

[CrossRef]Lee, C.-C., and Hervé, J. M., 2011, “Isoconstrained Parallel Generators of Shoenflies Motion,” Trans. ASME J. Mech. Rob., 3 (2), p. 021006.

[CrossRef]Chirikjian, G. S., and Kyatkin, A. B., 2001, Engineering Applications of Noncommutative Harmonk Analysis, CRC Press.

Lee, K., Wang, Y., and Chirikjian, G. S., 2007, “O(n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains Using Lie Derivatives,” Robotica25 , pp. 739–750.

[CrossRef]Müller, A., and Terze, Z, 2009, “Lie Group Modeling and Forward Dynamics Simulation of Multibody Systems, Part 1: Topology and Kinematics,” Trans. FAMENA, 33 , p. 2.

Müller, A., 2011, “On the Manifold Property of the Set of Singularities of Kinematic Mappings: Modeling, Classification and Genericity,” Trans. ASME J. Mech. Rob., 3 (1), p. 011006.

[CrossRef]Müller, A., 2012, “On the Manifold Property of the Set of Singularities of Kinematic Mappings: Genericity Conditions,” Trans. ASME J. Mech. Rob., 4 (1), p. 011006.

[CrossRef]Aspragathos, N. A., and Dimitros, J. K., 1998, “A Comparative Study of Three Methods for Robot Kinematics,” IEEE Trans Syst Man Cybern., Part B: Cybern.28 (2), pp. 135–145.

[CrossRef]Suleyman, D., 2007, “Matrix Realization of Dual Quaternionic Electromagnetism,” Cent. Eur. J. Phys., 5 (4), pp. 487–506.

[CrossRef]Hervé, J. M., 1978, “Analyze structurelle des mécanismes par groupe des déplacements (in French),” Mech. Mach. Theory, 13 , pp. 437–450.

[CrossRef]Chen, C., 2010, “Mobility Analysis of Parallel Manipulators and Pattern of Transform Matrix,” Trans. ASME J. Mech. Rob., 2 (4), p. 041003.

[CrossRef]McMahon, C., and Browne, J., 1998, "*CADCAM: Principles, Practice and Manufacturing Management*", Addison-Wesley, New York.

Ayres, F., 1974, "*Theory and Problems of Matrices*", Schaum’s Outline Series, McGraw Hill, NY.