Lenarcic, J., and Stanisic, M., 2003, “A Humanoid Shoulder Complex and the Humeral Pointing Kinematics,” IEEE Trans. Rob. Autom., 19 (3), pp. 499–506.

[CrossRef]Newkirk, J. T., Watson, L. T., and Stanisic, M. M., 2010, “Determining the Number of Inverse Kinematic Solutions of a Constrained Parallel Mechanism Using a Homotopy Algorithm,” ASME J. Mech. Rob., 2 (2), p. 024502.

[CrossRef]Kocsis, L., Kiss, R. M., and Jurák, M., 2000, “Determination and Representation of the Helical Axis to Investigate Arbitrary Arm Movements,” Facta Universitatis Ser. Phys. Educ., 1 (7), pp. 31–37. Available at: http://facta.junis.ni.ac.rs/pe/pe2000/pe2000-04.pdf.

Lee, U. K., and Han, C. S., 2008, “A Method for Predicting Dynamic Behaviour Characteristics of a Vehicle Using the Screw Theory—Part 1,” Proc. Inst. Mech. Eng., Part D (J. Automob. Eng.), 222 (1), pp. 65–77.

[CrossRef]Simionescu, P. A., Talpasanu, I., and Di Gregorio, R., 2010, “Instant-Center Based Force Transmissivity and Singularity Analysis of Planar Linkages,” ASME J. Mech. Rob., 2 (2), p. 021011.

[CrossRef]Coutsias, E. A., Seok, C., and Jacobson, M. P., 2004, “A Kinematic View of Loop Closure,” J. Comput. Chem., 25 (4), pp. 510–528.

[CrossRef]Lee, K., Wang, Y., and Chirikjian, G. S., 2007, “O (n) Mass Matrix Inversion for Serial Manipulators and Polypeptide Chains Using Lie Derivatives,” Robotica, 25 (06), pp. 739–750.

[CrossRef]Shahbazi, A., Ilies, H. T., and Kazerounian, K., 2010, “Hydrogen Bonds and Kinematic Mobility of Protein Molecules,” ASME J. Mech. Rob., 2 (2), p. 021009.

[CrossRef]Dimentberg, F. M., 1959, "*A General Method for the Investigation of Finite Displacements of Spatial Mechanisms and Certain Cases of Passive Joints*" (Purdue Translation No. 436), Purdue University, Lafayette, IN.

Duffy, J., and Crane, C., 1980, “A Displacement Analysis of the General Spatial 7-Link, 7R Mechanism,” Mech. Mach. Theory, 15 (3), pp. 153–169.

[CrossRef]Lee, H. Y., and Liang, C. G., 1988, “Displacement Analysis of the General Spatial 7-Link 7R Mechanism,” Mech. Mach. Theory, 23 (3), pp. 219–226.

[CrossRef]Raghavan, M., and Roth, B., 1995, “Solving Polynomial Systems for the Kinematic Analysis and Synthesis of Mechanisms and Robot Manipulators,” ASME J. Mech. Des., 117 (B), pp. 71–79.

[CrossRef]Qiao, S., Liao, Q., and Wei, S., 2010, “Inverse Kinematic Analysis of the General 6R Serial Manipulators Based on Double Quaternions,” Mech. Mach. Theory, 45 (2), pp. 193–199.

[CrossRef]Zoppi, M., 2002, “Effective Backward Kinematics for an Industrial 6R Robot,” "*ASME 2002 Design Engineering Technical Conferences and Computers and Information in Engineering Conference*", Montreal.

Manocha, D., and Canny, J. F., 1994, “Efficient Inverse Kinematics for General 6R Manipulators,” IEEE Trans. Rob. Autom., 10 (5), pp. 648–657.

[CrossRef]McCarthy, J. M., 2011, “Kinematics, Polynomials, and Computers—A Brief History,” ASME J. Mech. Rob., 3 (1), p. 010201.

[CrossRef]Wampler, C. W., and Sommese, A. J., 2011, “Numerical Algebraic Geometry and Algebraic Kinematics,” Acta Numerica, 20 (1), pp. 469–567.

[CrossRef]Smith, D. R., and Lipkin, H., 1990, “Analysis of Fourth Order Manipulator Kinematics Using Conic Sections,” "*Proceeding of the 1990 IEEE International Conference on Robotics and Automation*", pp. 274–278.

Jin, Q., and Yang, T., 2002, “Overconstraint Analysis on Spatial 6-Link Loops,” Mech. Mach. Theory, 37 (3), pp. 267–278.

[CrossRef]Milenkovic, V., 1979, “Computer Synthesis of Continuous Path Robot Motion,” "*Proceedings 5th World Congress Theory of Machines and Mechanisms*", ASME, pp. 1332–1335.

Loo, M., and Milenkovic, V., 1987, “Multicircular Curvilinear Robot Path Generation,” "*Robots 11 Conference Proceedings and 17th International Symposium Industrial Robots*", SME, Dearborn, MI, Vol. 18 , pp. 19–27.

Loo, M., Hamidieh, Y. A., and Milenkovic, V., 1990, “Generic Path Control for Robot Applications,” "*Robots 14 Conference Proceedings*", SME, Dearborn, MI, Vol. 10 , pp. 49–64.

Milenkovic, P., 2011, “Solution of the Forward Dynamics of a Single-Loop Linkage Using Power Series,” ASME J. Dyn. Syst., Meas., Control, 133 (6), p. 061002.

[CrossRef]Rico, J. M., Gallardo, J., and Duffy, J., 1999, “Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains,” Mech. Mach. Theory, 34 (4), pp. 559–586.

[CrossRef]Karger, A., 1996, “Singularity Analysis of Serial Robot-Manipulators,” ASME J. Mech. Des., 118 (4), pp. 520–525.

[CrossRef]Müller, A., and Rico, J. M., 2008, “Mobility and Higher Order Local Analysis of the Configuration Space of Single-Loop Mechanisms,” "*Advances in Robot Kinematics: Analysis and Design*", J.Lenarcic and P.Wenger, eds., Springer, The Netherlands, pp. 215–224.

Sommer, H. J., 2008, “Jerk Analysis and Axode Geometry of Spatial Linkages,” ASME J. Mech. Des., 130 (4), p. 042301.

[CrossRef]Cervantes-Sánchez, J. J., Rico-Martínez, J. M., and González-Montiel, G., 2009, “The Differential Calculus of Screws: Theory, Geometrical Interpretation, and Applications,” Proc. Inst. Mech. Eng., Part C, 223 (6), pp. 1449–1468.

[CrossRef]Rico, J. M., Gallardo, J., and Ravani, B., 2003, “Lie Algebra and the Mobility of Kinematic Chains,” J. Rob. Syst., 20 (8), pp. 477–499.

[CrossRef]Milenkovic, P. H., 2010, “Mobility of Single-Loop Kinematic Mechanisms Under Differential Displacement,” ASME J. Mech. Des., 132 (4), p. 041001.

[CrossRef]Karsai, G., 2001, “Method for the Calculation of the Combined Motion Time Derivatives of Optional Order and Solution for the Inverse Kinematic Problems,” Mech. Mach. Theory, 36 (2), pp. 261–272.

[CrossRef]Milenkovic, P., and Brown, M. V., 2011, “Properties of the Bennett Mechanism Derived From the RRRS Closure Ellipse,” ASME J. Mech. Rob., 3 (2), p. 021012.

[CrossRef]Milenkovic, P., 2011, “Series Solution for Finite Displacement of Planar Four-Bar Linkages,” ASME J. Mech. Rob., 3 (1), p. 014501.

[CrossRef]Griewank, A., and Walther, A., 2008, "*Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation*", 2nd ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia.

Koetsier, T., 1986, “From Kinematically Generated Curves to Instantaneous Invariants: Episodes in the History of Instantaneous Planar Kinematics,” Mech. Mach. Theory, 21 (6), pp. 489–498.

[CrossRef]McCarthy, J., and Roth, B., 1981, “The Curvature Theory of Line Trajectories in Spatial Kinematics,” ASME J. Mech. Des., 103 (4), pp. 718–724.

[CrossRef]Dooner, D. B., and Griffis, M. W., 2007, “On Spatial Euler-Savary Equations for Envelopes,” ASME J. Mech. Des., 129 (8), pp. 865–876.

[CrossRef]Woo, L., and Freudenstein, F., 1970, “Application of Line Geometry to Theoretical Kinematics and the Kinematic Analysis of Mechanical Systems,” J. Mech., 5 , pp. 417–460.

[CrossRef]Cervantes-Sánchez, J. J., Moreno-Báez, M. A., and Rico-Martínez, J. M., 2004, “A Novel Geometrical Derivation of the Lie Product,” Mech. Mach. Theory, 39 (10), pp. 1067–1079.

[CrossRef]Milenkovic, V., and Huang, B., 1983, “Kinematics of Major Robot Linkages,” "*13th International Symposium on Industrial Robots and Robotics/Robots 7*", SME, Chicago, Vol. 2 , pp. 31–47.

Lenarcic, J., 1998, “Alternative Computational Scheme of Manipulator Inverse Kinematics,” "*Proceedings of the 1998 IEEE International Conference on Robotics and Automation*", Vol. 4 , pp. 3235–3240.

Cheng, H., and Gupta, K. C., 1990, “A Study of the Numerical Robot Inverse Kinematics Based Upon the ODE Solution Method,” "*Mechanism Synthesis and Analysis: Presented at the 1990 ASME Design Technical Conferences—21st Biennial Mechanisms Conference*", ASME, Chicago, IL, Sep. 16−19, pp. 243–247.

Lenarcic, J., 1985, “An Efficient Numerical Approach for Calculating the Inverse Kinematics for Robot Manipulators,” Robotica, 3 , pp. 21–26.

[CrossRef]Zhao, Y., Huang, T., and Yang, Z., 2005, “A New Numerical Algorithm for the Inverse Position Analysis of all Serial Manipulators,” Robotica, 24 (3), pp. 373–376.

[CrossRef]Lucas, S. R., Tischler, C. R., and Samuel, A. E., 2000, “Real-Time Solution of the Inverse Kinematic-Rate Problem,” Int. J. Rob. Res., 19 (12), pp.
1236–1244.

[CrossRef]Siciliano, B., 1990, “A Closed-Loop Inverse Kinematic Scheme for on-Line Joint-Based Robot Control,” Robotica, 8 (3), pp. 231–243.

[CrossRef]Angeles, J., 1985, “On the Numerical Solution of the Inverse Kinematic Problem,” Int. J. Rob. Res., 4 (2), pp. 21–37.

[CrossRef]Sultan, I. A., 2000, “On the Positioning of Revolute-Joint Robot Manipulators,” J. Rob. Syst., 17 (8), pp. 429–438.

[CrossRef]Husty, M. L., Pfurner, M., and Schröcker, H. P., 2007, “A New and Efficient Algorithm for the Inverse Kinematics of a General Serial 6R Manipulator,” Mech. Mach. Theory, 42 (1), pp. 66–81.

[CrossRef]Milenkovic, V., Milenkovic, V. J., and Milenkovic, P. H., 1991, “Inverse Kinematics of Not Fully Serial Robot Linkages With Nonsingular Wrists,” "*Advances in Robot Kinematics: With Emphasis on Symbolic Computation*", S.Stifter and J.Lenarcic, eds., Springer, Berlin, pp. 335–342.

Stanisic, M. M., and Duta, O., 1990, “Symmetrically Actuated Double Pointing Systems: The Basis of Singularity-Free Robot Wrists,” IEEE Trans. Rob. Autom., 6 (5), pp. 562–569.

[CrossRef]Wiitala, J. M., and Stanisic, M. M., 2000, “Design of an Overconstrained and Dextrous Spherical Wrist,” ASME J. Mech. Des., 122 (3), pp. 347–353.

[CrossRef]Milenkovic, P., 2011, “Nonsingular Spherically Constrained Clemens Linkage Wrist,” ASME J. Mech. Rob., 3 (1), p. 011014.

[CrossRef]Milenkovic, V., 1990, “Non-Singular Industrial Robot Wrist,” U.S. Patent No. 4,907,937.

Milenkovic, V., 1987, “New Nonsingular Robot Wrist Design,” "*Robots 11 Conference Proceedings RI/SME*", pp. 13.29–13.42.

Milenkovic, V., 1988, “Hollow Non-Singular Robot Wrist,” U.S. Patent No. 4,744,264.