Hoyo, J. D., Elliott, A., and Christie, D. A., 1992, "Handbook of the Birds of the World", Lynx Edicions, Barcelona.
Delaurier, J., 1993, “An Aerodynamic Model for Flapping-Wing Flight,” Aeronaut J., 93 , pp. 125–130.
Muniappan, A., Baskar, V., and Duriyanandhan, V., 2005, “Lift and Thrust Characteristics of Flapping Wing Micro Air Vehicle (Mav),” AIAA Paper No. 2005-1055, Reno, Nevada.
Siciliano, B., 2008, "Springer Handbook of Robotics", Springer, NY.
Madangopal, R., Khan, Z., and Agrawal, S., 2005, “Biologically Inspired Design of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms and Quasi-Steady Aerodynamics,” ASME J. Mech. Des., 127 (4), pp. 809–817.
[CrossRef]Pornsin-Sirirak, T., Tai, Y., Ho, C., and Keennon, M., 2001, “Microbat: A Palm-Sized Electrically Powered Ornithopter,” "Proceedings of the NASA/JPL Workshop on Biomorphic Robotics", Pasadena, CA.
Bejgerowski, W., Ananthanarayanan, A., Mueller, D., and Gupta, S., 2009, “Integrated Product and Process Design for a Flapping Wing Drive-Mechanism,” ASME J. Mech. Des., 131 , p. 061006.
[CrossRef]Mueller, T. J., 2001, "Fixed and Flapping Wing Aerodynamics for Micro Air Vehicle Applications", American Institute of Aeronautics and Astronautics, Reston, VA.
Jones, K. D., Bradshaw, C. J., Papadopoulos, J., and Platzer, M. F., 2004, “Improved Performance and Control of Flapping-Wing Propelled Micro Air Vehicles,” "Proceedings of the AIAA 42nd Aerospace Sciences Meeting and Exhibit", Reno, Nevada.
Croon, C., Ruijsink, R., and Wagter, C., 2009, “Design, Aerodynamics, and Vision-Based Control of the Delfly,” Int. J. Micro Air Veh., 1 (2), pp. 71–97
.
Cox, A., Monopoli, D., Cveticanin, D., Goldfarb, M., and Garcia, E., 2002, “The Development of Elastodynamic Components for Piezoelectrically Actuated Flapping Micro-Air Vehicles,” J. Intell. Mater. Syst. Struct., 13 (9), pp. 611–615.
[CrossRef]Mueller, D., Bruck, H. A., and Gupta, S. K., 2010, “Measurement of Thrust and Lift Forces Associated With Drag of Compliant Flapping Wing for Micro Air Vehicles Using a New Test Stand Design,” Exp. Mech., 50 (6), pp. 725–735.
[CrossRef]Shyy, W., Berg, M., and Ljungqvist, D., 1999, “Flapping and Flexiblewings for Biological and Micro Air Vehicles,” Prog. Aerosp. Sci., 35 , pp. 455–505.
[CrossRef]Zdunich, P., Bilyk, D., MacMaster, M., Loewen, D., DeLaurier, J., Kornbluh, R., Low, T., Stanford, S., and Holeman, D., 2007, “Development and Testing of the Mentor Flapping-Wing Micro Air Vehicle,” J. Aircr., 44 (5), pp. 1701–1711.
[CrossRef]DeLuca, A. M., Reeder, M. F., Freeman, J., and Oi, M. V., 2006, “Flexible- and Rigid-Wing Micro Air Vehicle: Lift and Drag Comparison,” J. Aircr., 43 , p. 2.
[CrossRef]Sane, S. P., and Dickinson, M. H., 2002, “The Aerodynamic Effects of Wing Rotation and a Revised Quasi-Steady Model of Flapping Flight,” J. Exp. Biol., 205 , pp. 1087–1096.
Yang, L.-J., Hsu, C.-K., Ho, J.-Y., and Feng, C.-K., 2007, “Flapping Wings With Pvdf Sensors to Modify the Aerodynamic Forces of a Micro Aerial Vehicle,” Sens. Actuators, A, 139 (1–2), pp. 95–103.
[CrossRef]Hsu, C.-K., Ho, J.-Y., Feng, G.-H., Shih, H.-M., and Yang, L.-J., 2006, “A Flapping Mav With Pvdf-Parylene Composite Skin,” "Proceedings of the Asia-Pacific Conference of Transducers and Micro-Nano Technology".
Berg, C. V. D., and Ellington, C., 1997, “The Vortex Wake of a ‘Hovering’ Model Hawkmoth,” Philos. Trans. R. Soc. London, Ser. B, 352 (1351), pp. 317–328.
[CrossRef]Ellington, C., Berg, C. V. D., Willmott, A., and Thomas, A., 1996, “Leading-Edge Vortices in Insect Flight,” Nature (London), 384 (6610), pp. 626–630.
[CrossRef]Birch, J., and Dickinson, M., 2001, “Spanwise Flow and the Attachment of the Leading-Edge Vortex on Insect Wings,” Nature (London), 412 (6848), pp. 729–733.
[CrossRef]Dickinson, M., Lehmann, F., and Sane, S., 1999, “Wing Rotation and the Aerodynamic Basis of Insect Flight,” Science, 284 , pp. 1954–1960.
[CrossRef]Dickinson, M., and Gotz, K., 1993, “Unsteady Aerodynamic Performance of Model Wings at Low Reynolds Numbers,” J. Exp. Biol., 174 , pp. 45–64.
Wang, Z., Birch, J., and Dickinson, M., 2004, “Unsteady Forces and Flows in Low Reynolds Number Hovering Flight: Two-Dimensional Computations Vs. Robotic Wing Experiments,” J. Exp. Biol., 207 , pp. 449–460.
[CrossRef]Weis-Fogh, T., 2005, “Quick Estimates of Flight Fitness in Hovering Animals, Including Novel Mechanisms for Lift Production,” J. Exp. Biol., 59 (1973), pp. 169–230.
Hsu, C.-K., Evans, J., Vytla, S., and Huang, P., 2010, "Development of Flapping Wing Micro Air Vehicles - Design, Cfd, Experiment and Actual Flight", Orlando, FL.
Breugel, F. V., Teoh, Z. E., and Lipson, H., 2009, "Flying Insects and Robots", Springer, Berlin, Heidelberg.
Mueller, D., Gerdes, J., and Gupta, S.K., 2009, “Incorporation of Passive Wing Folding in Flapping Wing Miniature Air Vehicles,” "ASME Mechanism and Robotics Conference", San Diego. Aug. 30–Sep. 2.
Billingsley, D., Slipher, G., Grauer, J., and Hubbard, J., 2009, “Testing of a Passively Morphing Ornithopter Wing,” AIAA Paper No. 2009-1828.
Billingsley, D., and Hubbard, J., 2007, “Passive Wing Morphing for Improved Lift in Flapping Wing Ornithopters,” "Proceedings of the AIAA Student Conference Region I-MA".
Tsai, B.-J., and Fu, Y.-C., 2009, “Design and Aerodynamic Analysis of a Flapping-Wing Micro Aerial Vehicle,” Aerosp. Sci. Technol., 13 (7), pp. 383–392.
[CrossRef]Malolan, V., Dineshkumar, M., and Baskar, V., 2004, “Design and Development of Flapping Wing Micro Air Vehicle,” "42nd AIAA Aerospace Sciences Meeting and Exhibit", Reno, Nevada, Jan. 5–8.
Banala, S., and Agrawal, S., 2005, “Design and Optimization of a Mechanism for Out-of-Plane Insect Wing-Like Motion With Twist,” ASME J. Mech. Des., 127 (4), pp. 841–844.
[CrossRef]Galinski, C., and Zbikowski, R., 2007, “Materials Challenges in the Design of an Insect-Like Flapping Wing Mechanism,” Mater. Des., 28 (3), pp. 783–796.
[CrossRef]Yan, J., Wood, R. J., Avadhanula, S., Sitti, M., and Fearing, R. S., 2001, “Towards Flapping Wing Control for a Micromechanical Flying Insect,” "Proceedings of the Robotics and Automation, 2001. Proceedings 2001 ICRA. IEEE International Conference on", Vol. 4 , pp. 3901–3908.
Fenelon, M. A. A., and Furukawa, T., “Design of an Active Flapping Wing Mechanism and a Micro Aerial Vehicle Using a Rotary Actuator,” Mech. Mach. Theory, 45 (2), pp. 137–146.
[CrossRef]Tobalske, B., 2010, “Hovering and Intermittent Flight in Birds,” Bioinspir. Biomim., 5 (4), p. 045004.
[CrossRef]Akos, Z., Nagy, M., Leven, S., and Vicsek, T., 2008, “Comparing Bird and Human Soaring Strategies,” Proc. Natl. Acad. Sci. USA, 105 (11), p. 4139.
[CrossRef]Akos, Z., Nagy, M., Severin, L., and Vicsek, T., 2010, “Thermal Soaring Flight of Birds and Unmanned Aerial Vehicles,” Bioinspir. Biomim., 5 (4), p. 045003.
[CrossRef]Brown, R., and Fedde, M., 1993, “Airflow Sensors in the Avian Wing,” J. Exp. Biol., 179 (1), pp. 13–30.
Usherwood, J., Hedrick, T., Mcgowan, C., and Biewener, A., 2005, “Dynamic Pressure Maps for Wings and Tails of Pigeons in Slow, Flapping Flight, and Their Energetic Implications,” J. Exp. Biol., 208 (2), pp. 355–369.
[CrossRef]Harper, E. J., Lambert, L., and Moodie, N., 1998, “The Comparative Nutrition of Two Passerine Species: The Canary (Serinus canarius) and the Zebra Finch (Poephila guttata),” J. Nutr., 128 , pp. 2684S–2685S.
Suarez, R., 1992, “Hummingbird Flight: Sustaining the Highest Mass-Specific Metabolic Rates Among Vertebrates,” Cell. Mol. Life Sci., 48 (6), pp. 565–570.
[CrossRef]Pearson, O., 1950, “The Metabolism of Hummingbirds,” Condor, 52 (4), pp. 145–152.
[CrossRef]Halkin, S. L., 1999, “Northern Cardinal (Cardinalis cardinalis),” Birds N. Am., 440 (32), pp. 1–32.
Bejgerowski, W., Gerdes, J., Gupta, S. K., Bruck, H. A., and Wilkerson, S., 2010, “Design and Fabrication of a Multi-Material Compliant Flapping Wing Drive Mechanism for Miniature Air Vehicles,” "Proceedings of the ASME Mechanism and Robotics Conference", Montreal, Canada.