Husty, M. L., 2000, “E. Borel’s and R. Bricard’s Papers on Displacements with Spherical Paths and their Relevance to Self-Motions of Parallel Manipulators,” International Symposium on History of Machines and Mechanisms, M.Ceccarelli, ed., Kluwer, pp. 163–172.

Merlet, J.-P., 1989, “Singular Configurations of Parallel Manipulators and Grassmann Geometry,” Int. J. Rob. Res., 8 (5), pp. 45–56.

[CrossRef]DiGregorio, R., 2001, “Analytic Formulation of the 6–3 Fully-Parallel Manipulator’s Singularity Determination,” Robotica, 19 (6), pp. 663–667.

Downing, D. M., Samuel, A. E., and Hunt, K. H., 2002, “Identification of the Special Configurations of the Octahedral Manipulator Using the Pure Condition,” Int. J. Rob. Res., 21 (2), pp. 147–159.

[CrossRef]Ben-Horin, P., and Shoham, M., 2006, “Singularity Analysis of a Class of Parallel Robots Based on Grassmann-Cayley Algebra,” Mech. Mach. Theory, 41 (8), pp. 958–970.

[CrossRef]Ben-Horin, P., and Shoham, M., 2006, “Singularity Condition of Six Degree-of-Freedom Three-Legged Parallel Robots Based on Grassmann–Cayley algebra,” IEEE Trans. Rob., 22 (4), pp. 577–590.

[CrossRef]Borras, J., Thomas, F., and Torras, C., 2009, “On Δ-Transforms,” IEEE Trans. Rob., 25 (6), pp. 1225–1236.

[CrossRef]Stachel, H., 2002, “Remarks on Bricard’s Flexible Octahedra of Type 3,” 10th International Conference on Geometry and Graphics, pp. 8–12.

Stachel, H., 1987, “Zur Einzigkeit der Bricardschen Oktaeder,” J. Geom., 28 , pp. 41–56.

[CrossRef]Karger, A., 2010, “Self-Motions of 6–3 Stewart-Gough Type Parallel Manipulators,” "*Advances in Robot Kinematics: Motion in Man and Machine*", J.Lenarcic and M.M.Stanisic, eds., Springer, New York, pp. 359–366.

Dandurand, A., 1984, “The Rigidity of Compound Spatial Grids,” Struct. Topol., 10 , pp. 41–56.

McCarthy, J. M., 2000, "*Geometric Design of Linkages*", Springer, New York.

Nawratil, G., 2009“All Planar Parallel Manipulators With Cylindrical Singularity Surface,” Mech. Mach. Theory, 44 (12), pp. 2179–2186.

[CrossRef]Krames, J., 1975, “Über Drehzykliden vierter Ordnung,” Monatshefte für Mathematik, 80 , pp. 45–60.

[CrossRef]Nawratil, G., 2010, “On the Spin Surface of RSSR Mechanisms With Parallel Rotary Axes,” ASME J. Mech. Rob., 2 (1), p. 011009.

Nawratil, G., 2010, “Flexible Octahedra in the Projective Extension of the Euclidean 3-Space,” J. Geom. Graphics, 14 (2), pp. 147–169.

Bricard, R., 1897, “Mémoire sur la théorie de l’octaèdre articulé,” Journal de Mathématiques pures et appliquées, Liouville, 3 , pp. 113–148.

Connelly, R., 1978, “The Rigidity of Suspensions,” J. Diff. Geom., 13 , pp. 399–408.

Kokotsakis, A., 1932, “Über bewegliche Polyeder,” Math. Ann., 107 , pp. 627–647.

[CrossRef]Bennett, G. T., 1912, “Deformable Octahedra,” Proc. London Math. Soc., 10 , pp. 309–343.

[CrossRef]Blaschke, W., 1929, “Über affine Geometrie XXVI: Wackelige Achtflache,” Math. Z., 6 , pp. 85–93.

[CrossRef]Bottema, O., 1967, “Flexible Hexagons,” Proc. K. Ned. Akad. Wet., A70 , pp. 151–155.

Lebesgue, H., 1967, “Octaèdres articulés de Bricard,” Enseign. Math. II, 13 , pp. 175–185.

Wunderlich, W., 1965, “Starre, Kippende, Wackelige und Bewegliche Achtflache,” Elemente Math., 20 , pp. 25–32.

Nawratil, G., 2011, “Reducible Compositions of Spherical Four-Bar Linkages With a Spherical Coupler Component,” Mech. Mach. Theory, 46 (5), pp. 725–742.

[CrossRef]Stachel, H., 2010, “A Kinematic Approach to Kokotsakis Meshes,” Comput. Aided Geom. Des., 27 , pp. 428–437.

[CrossRef]Chiang, C. H., 1988, "*Kinematics of Spherical Mechanisms*", Cambridge University, New York.

Moore, B., Schicho, J., and Gosselin, C. M., 2010, “Dynamic Balancing of Spherical 4R Linkages,” J. Mech. Rob., 2 (2), p. 021002.

[CrossRef]Nawratil, G., and Stachel, H., 2010, “Composition of Spherical Four-Bar-Mechanisms,” "*New Trends in Mechanisms Science*", D.Pisla, M.Ceccarelli, M.Husty, and B.Corves, eds., Springer, Dordrecht, pp. 99–106.

Husty, M. L., 1996, “An Algorithm for Solving the Direct Kinematics of General Stewart-Gough Platforms,” Mech. Mach. Theory, 31 (4), pp. 365–379.

[CrossRef]