Lee, E., and Mavroidis, C., 2002, “Solving the Geometric Design Problem of Spatial 3R Robot Manipulators Using Polynomial Homotopy Continuation,” ASME J. Mech. Des., 124 (4), pp. 652–661.

[CrossRef]Verschelde, J., and Haegemans, A., 1993, “The GBQ Algorithm for Constructing Start Systems of Homotopies for Polynomial Systems,” SIAM (Soc. Ind. Appl. Math.) J. Numer. Anal., 30 (2), pp. 583–594.

Verschelde, J., 1999, “Algorithm 795: PHCpack: A General-Purpose Solver for Polynomial Systems by Homotopy Continuation,” ACM Trans. Math. Softw., 25 (2), pp. 251–276.

[CrossRef]Wise, S. M., Sommese, A. J., and Watson, L. T., 2000, “Algorithm 801: POLSYS_PLP: A Partitioned Linear Product Homotopy Code for Solving Polynomial Systems of Equations,” ACM Trans. Math. Softw., 26 , pp. 176–200.

[CrossRef]Lee, E., and Mavroidis, C., 2004, “Geometric Design of 3R Robot Manipulators for Reaching Four End-Effector Spatial Poses,” Int. J. Robot. Res., 23 (3), pp. 247–254.

[CrossRef]Su, H. -J., McCarthy, J. M., Sosonkina, M., and Watson, L. T., 2006, “Algorithm 857: POLSYS_GLP—A Parallel General Linear Product Homotopy Code for Solving Polynomial Systems of Equations,” ACM Trans. Math. Softw., 32 (4), pp. 561–579.

[CrossRef]Su, H., McCarthy, J. M., and Watson, L. T., 2004, “Generalized Linear Product Homotopy Algorithms and the Computation of Reachable Surfaces,” ASME J. Comput. Inf. Sci. Eng., 4 (3), pp. 226–234.

[CrossRef]Perez, A., and McCarthy, J. M., 2004, “Dual Quaternion Synthesis of Constrained Robotic Systems,” ASME J. Mech. Des., 126 (3), pp. 425–435.

[CrossRef]Perez-Gracia, A., and McCarthy, J. M., 2006, “Kinematic Synthesis of Spatial Serial Chains Using Clifford Algebra Exponentials,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 220 (C7), pp. 951–966.

[CrossRef]Sommese, A. J., and Wampler, C. W., 2005, "

*The Numerical Solution of Systems of Polynomials Arising in Engineering and Science*", World Scientific, New Jersey.

[CrossRef]Lee, T. L., Li, T. Y., and Tsai, C. H., 2008, “HOM4PS-2.0: A Software Package for Solving Polynomial Systems by the Polyhedral Homotopy Continuation Method,” Computing, 83 , pp. 109–133.

[CrossRef]Midha, A., Erdman, A. G., and Frohrib, D. A., 1977, “An Approximate Method for the Dynamic Analysis of Elastic Linkages,” ASME J. Eng. Ind., 99 , pp. 449–455.

[CrossRef]Her, I., and Midha, A., 1987, “A Compliance Number Concept for Compliant Mechanisms, and Type Synthesis,” ASME J. Mech., Transm., Autom. Des., 109 , pp. 348–355.

Hill, T. C., and Midha, A., 1990, “A Graphical, User-Driven Newton–Raphson Technique for Use in the Analysis and Design of Compliant Mechanisms,” ASME J. Mech. Des., 112 , pp. 123–130.

[CrossRef]Kota, S., Ananthasuresh, G. K., Crary, S. B., and Wise, K. D., 1994, “Design and Fabrication of Microelectromechanical Systems,” ASME J. Mech. Des., 116 , pp. 1081–1088.

[CrossRef]Frecker, M. I., Ananthasuresh, G. K., Nishiwaki, S., Kikuchi, N., and Kota, S., 1997, “Topological Synthesis of Compliant Mechanisms Using Multi-Criteria Optimization,” ASME J. Mech. Des., 119 , pp. 238–245.

[CrossRef]Howell, L., 2001, "*Compliant Mechanisms*", Wiley, New York.

Kimball, C., and Tsai, L. -W., 2002, “Modeling of Flexural Beams Subjected to Arbitrary End Loads,” ASME J. Mech. Des., 124 , pp. 223–235.

[CrossRef]Jensen, B. D., and Howell, L. L., 2004, “Bistable Configurations of Compliant Mechanisms Modeled Using Four Links and Translational Joints,” ASME J. Mech. Des., 126 , pp. 657–656.

[CrossRef]Su, H. -J., and McCarthy, J. M., 2006, “A Polynomial Homotopy Formulation of the Inverse Static Analysis of Planar Compliant Mechanisms,” ASME J. Mech. Des., 128 , pp. 776–786.

[CrossRef]Su, H. -J., and McCarthy, J. M., 2007, “Synthesis of Bistable Compliant Four-Bar Mechanisms Using Polynomial Homotopy,” ASME J. Mech. Des., 129 , pp. 1094–1098.

[CrossRef]Hegde, S., and Ananthasuresh, G. K., 2010, “Design of Single-Input-Single-Output Compliant Mechanisms for Practical Applications Using Selection Maps,” ASME J. Mech. Des., 132 , p. 081007.

[CrossRef]Lusk, C. P., and Howell, L. L., 2004, “A Micro Helico-Kinematic Platform via Spherical Crank-Sliders,” ASME Conf. Proc., 2004 , p. 131.

Espinosa, D. A., and Lusk, C. P., 2010, “Part 1: Moment-Dependent Pseudo-Rigid-Body Models for Straight Beams,” ASME Paper No. DETC2010-29230.

Griffis, M., and Duffy, J., 1991, “Kinestatic Control: A Novel Theory for Simultaneously Regulating Force and Displacement,” ASME J. Mech. Des., 113 , pp. 508–515.

[CrossRef]Duffy, J., Rooney, J., Knight, B., and Crane, C. D., 2000, “A Review of a Family of Self-Deploying Tensegrity Structures With Elastic Ties,” The Shock and Vibration Digest, 32 (2), pp. 100–106.

[CrossRef]Wang, B. -B., 1998, “Cable-Strut Systems: Part I—Tensegrity,” J. Constr. Steel Res., 45 (3), pp. 281–289.

[CrossRef]Motro, R., 2003, "*Tensegrity: Structural Systems for the Future*", Kogan Page Ltd., London, UK.

Crane, C. D., Duffy, J., and Correa, J. C., 2005, “Static Analysis of Tensegrity Structure,” ASME J. Mech. Des., 127 , pp. 257–268.

[CrossRef]Tibert, A. G., and Pellegrino, S., 2003, “Deployable Tensegrity Masts,” 44th Structures, Structural Dynamics, and Materials Conference , Paper No. AIAA2003, 1978, 2003.

Barrette, G., and Gosselin, C. M., 2005, “Determination of the Dynamic Workspace of Cable-Driven Planar Parallel Mechanisms,” ASME J. Mech. Des., 127 , pp. 242–248.

[CrossRef]Stump, E., and Kumar, V., 2006, “Workspaces of Cable-Actuated Parallel Manipulators,” ASME J. Mech. Des., 128 (1), pp. 159–167.

[CrossRef]Moon, Y., Crane, C. D., and Roberts, R. G., 2010, “Analysis of a Planar Tensegrity-Based Compliant Mechanism,” ASME Paper No. DETC2010-28.

Jiang, Q., and Kumar, V., 2010, “The Direct Kinematics of Objects Suspended From Cables,” ASME Paper No. DETC2010-280.