Gogu, G., 2005, “Mobility of Mechanisms: A Critical Review,” Mech. Mach. Theory, 40 (9), pp. 1068–1097.
Â
[CrossRef]Adams, J. D., and Whitney, D. E., 2001, “Application of Screw Theory to Constraint Analysis of Mechanical Assemblies Joined by Features,” ASME J. Mech. Des., 123 , pp. 26–32.
Â
[CrossRef]Dai, J. S., Huang, Z., and Lipkin, H., 2006, “Mobility of Overconstrained Parallel Mechanisms,” ASME J. Mech. Des., 128 , pp. 220–229.
Â
[CrossRef]Zhao, J. S., Feng, Z. J., and Wang, L. P., 2006, “The Free Mobility of a Parallel Manipulator,” Robotica, 24 (5), pp. 635–641.
Â
[CrossRef]Wohlhart, K., 2000, “Architectural Shakiness or Architectural Mobility of Platforms,” "Advances in Robot Kinematics", J.Lenarcic and M.M.Stanisic, eds., Kluwer, Dordrecht, pp. 365–374.
Roschel, O., and Mick, S., 1998, “Characterization of Architecturally Shaky Platforms,” "Advances in Robot Kinematics: Analysis and Control", J.Lenarcic and M.L.Husty, eds., Kluwer, Dordrecht, pp. 465–474.
Muller, A., 2002, “Higher Order Local Analysis of Singularities in Parallel Mechanisms,” ASME Paper No. DETC2002/MECH-34258.
Zlatanov, D., Bonev, I. A., and Gosselin, C. M., 2002, “Constraint Singularities of Parallel Mechanisms,” Proceedings of the ICRA ’02, IEEE International Conference on Robotics and Automation , Vol. 1 , pp. 980–985.
Kong, X., and Gosselin, C. M., 2005, “Mobility Analysis of Parallel Mechanisms Based on Screw Theory and the concept of Equivalent Serial Kinematic Chains,” ASME Paper No. DETC2005.
Chan, V. K., and Ebert-Uphoff, I., 2001, “Investigation of the Deficiencies of Parallel Manipulators in Singular Configurations Through the Jacobian Nullspace,” IEEE International Conference on Robotics and Automation , Vol. 2 , pp. 1313–1320.
Wolf, A., and Shoham, M., 2003, “Investigation of Parallel Manipulators Using Linear Complex Approximation,” ASME J. Mech. Des., 125 , pp. 564–572.
Â
[CrossRef]Wang, Y. X., and Wang, Y. M., 2005, “Configuration Bifurcations Analysis of Six Degree-of-Freedom Symmetrical Stewart Parallel Mechanisms,” ASME J. Mech. Des., 127 , pp. 70–77.
Â
[CrossRef]Rico, J. M., and Gallardo, J., 1996, “Acceleration Analysis, via Screw Theory, and Characterization of Singularities of Closed Chains,” "Recent Advances in Robot Kinematics", J.Lenarcic and V.Parenti-Castelli, eds., Kluwer, Dordrecht, pp. 139–148.
Kieffer, J., 1992, “Manipulator Inverse Kinematics for Untimed End-Effector Trajectories With Ordinary Singularities,” Int. J. Robot. Res., 11 (3), pp. 225–237.
Â
[CrossRef]Kieffer, J., 1994, “Differential Analysis of Bifurcations and Isolated Singularities for Robots and Mechanisms,” IEEE Trans. Rob. Autom., 10 (1), pp. 1–10.
Â
[CrossRef]Lerbet, J., and Fayet, M., 2003, “Singularities of Mechanisms and the Degree of Mobility,” Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dynamics, 217 (2), pp. 111–119.
Â
[CrossRef]Rico, J. M., Gallardo, J., and Ravani, B., 2003, “Lie Algebra and the Mobility of Kinematic Chains,” J. Rob. Syst., 20 (8), pp. 477–499.
Â
[CrossRef]Abbaspour, H., and Moskowitz, M., 2007, "Basic Lie Theory", World Scientific, Singapore, p. 427.
Donelan, P. S., 2007, “Singularity-Theoretic Methods in Robot Kinematics,” Robotica, 25 (06), pp. 641–659.
Â
[CrossRef]Donelan, P. S., 2008, “Genericity Conditions for Serial Manipulators,” "
Advances in Robot Kinematics: Analysis and Design", J.Lenarcic and P.Wenger, eds., Springer, New York, pp. 185–192.
Â
[CrossRef]Hervé, J., 1999, “The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design,” Mech. Mach. Theory, 34 (5), pp. 719–730.
Â
[CrossRef]Park, F. C., 1994, “Computational Aspects of the Product-of-Exponentials Formula for Robot Kinematics,” IEEE Trans. Autom. Control, 39 (3), pp. 643–647.
Â
[CrossRef]Milenkovic, P., 2010, “Mobility of Single-Loop Kinematic Mechanisms Under Differential Displacement,” ASME J. Mech. Des., 132 (4), p. 041001.
Howe, R., 1983, “Very Basic Lie Theory,” Am. Math. Monthly, 90 (9), pp. 600–623.
Â
[CrossRef]Rico, J. M., and Ravani, B., 2007, “On Calculating the Degrees of Freedom or Mobility of Overconstrained Linkages: Single-Loop Exceptional Linkages,” ASME J. Mech. Des., 129 , pp. 301–311.
Â
[CrossRef]Yefimov, N. V., and Shenitzer, A., 1964, "Quadratic Forms and Matrices: An Introductory Approach", Academic, New York.
Haykin, S., 1991, "Adaptive Filter Theory", 2nd ed., Prentice-Hall, Englewood Cliffs, NJ.
Hunt, K. H., 1973, “Constant-Velocity Shaft Couplings: A General Theory,” ASME J. Eng. Ind., 95 , pp. 455–464.
Clemens, M., 1869, “Improvement in Apparatus for Transmitting Rotary Motion,” U.S. Patent No. 96,395.
Canfield, S. L., Reinholtz, C. F., Salerno, R. J., 1997, “Spatial, Parallel-Architecture Robotic Carpal Wrist,” U.S. Patent No. 5,699,695.
Salerno, R. J., Canfield, S. L., and Ganino, A. J., 1995, “Parallel, Four Degree-of-Freedom Robotic Wrist,” Proceedings of the 1995 ASME Design Engineering Technical Conferences , Boston, MA, Vol. 82 , pp. 765–771.
Milenkovic, P., 2009, “Triangle Pseudocongruence in Constraint Singularity of Constant-Velocity Couplings,” ASME J. Mech. Rob., 1 , p. 021006.
Di Gregorio, R., 2004, “Kinematics of the 3-RSR Wrist,” IEEE Trans. Robot., 20 (4), pp. 750–753.
Â
[CrossRef]Myard, F. E., 1933, “Theorie Generale Des Joints De Transmission De Rotation—a Couples d’Emboitement,” Le Genie Civil, 102 , pp. 345–348.
Milenkovic, V., 1977, “A New Constant Velocity Coupling,” ASME J. Eng. Ind., 99 , pp. 367–374.
Aravind, P. K., 1989, “Geometrical Interpretation of the Simultaneous Diagonalization of Two Quadratic Forms,” Am. J. Phys., 57 (4), pp. 309–311.
Â
[CrossRef]Guan, L. W., Wang, J. S., and Wang, L. P., 2004, “Mobility Analysis of the 3-UPU Parallel Mechanism Based on Screw Theory,” Proceedings of the 2004 International Conference on Intelligent Mechatronics and Automation , pp. 309–314.
Di Gregorio, R., and Parenti-Castelli, V., 2002, “Mobility Analysis of the 3-UPU Parallel Mechanism Assembled for a Pure Translational Motion,” ASME J. Mech. Des., 124 , pp. 259–264.
Â
[CrossRef]Gogu, G., 2008, “Constraint Singularities and the Structural Parameters of Parallel Robots,” "
Advances in Robot Kinematics: Analysis and Design", J.Lenarcic and P.Wenger, eds., Springer, The Netherlands, pp. 21–28.
Â
[CrossRef]Zlatanov, D., Bonev, I. A., and Gosselin, C. M., 2002, “Constraint Singularities as C-space Singularities,” "Advances in Robot Kinematics: Theory and Applications", J.Lenarcic and F.Thomas, eds., Kluwer, The Netherlands, pp. 183–192.
Walter, D. R., Husty, M. L., and Pfurner, M., 2009, “A Complete Kinematic Analysis of the SNU 3-UPU Parallel Robot,” "Interactions of Classical and Numerical Algebraic Geometry: A Conference in Honor of A.J. Sommese", D.J.Bates, G.M.Besana, S.Di Rocco, and C.W.Wampler, eds., American Mathematical Society, Providence, RI, pp. 331–346.