Hervé, J. M., 1978, “Analyse Structurelle Des Mécanismes Par Groupe Des Déplacements,” Mech. Mach. Theory, 13 (4), pp. 437–450.

[CrossRef]Hunt, K. H., 1978, "*Kinematic Geometry of Mechanisms*", Clarendon, Oxford.

Angeles, J., 1982, "*Spatial Kinematic Chains: Analysis, Synthesis, Optimization*", Springer, New York.

Gogu, G., 2005, “Mobility of Mechanisms: A Critical Review,” Mech. Mach. Theory, 40 (9), pp. 1068–1097.

[CrossRef]Angeles, J., 2004, “The Qualitative Synthesis of Parallel Manipulators,” ASME J. Mech. Des., 126 (4), pp. 617–624.

[CrossRef]Hervé, J., 1999, “The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design,” Mech. Mach. Theory, 34 (5), pp. 719–730.

[CrossRef]Selig, J. M., 1996, "*Geometrical Methods in Robotics*", Springer, New York.

Bennett, G. T., 1903, “A New Mechanism,” Engineering (London), 76 , pp. 777–778.

Parkin, I. A., and Preston, J., 2000, “Analysis of the Bennett Mechanism by Means of Finite Displacement Screws,” "*Proceedings of the Symposium Commemorating the Legacy, Works, and Life of Sir Robert Stawell Ball Upon the 100th Anniversary of a Treatise on the Theory of Screws*", Trinity College, University of Cambridge, UK, pp. 9–22.

Huang, Z., Liu, J. F., and Li, Q. C., 2008, “Unified Methodology for Mobility Analysis Based on Screw Theory,” "

*Smart Devices and Machines for Advanced Manufacturing*", L.Wang and J.Xi, eds., Springer, London, pp. 49–78.

[CrossRef]Rico, J. M., and Ravani, B., 2002, “Group Theory Can Explain the Mobility of Paradoxical Linkages,” "*Advances in Robot Kinematics*", J.Lenarcic and F.Thomas, eds., Kluwer Academic, The Netherlands, pp. 245–254.

Rico, J. M., and Ravani, B., 2005, “Mobility Determination of Paradoxical Linkages,” "*Proceedings of the ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference*", New York, ASME Paper No. DETC2005-84936, pp. 1057–1073.

Rico, J. M., Gallardo, J., and Ravani, B., 2003, “Lie Algebra and the Mobility of Kinematic Chains,” J. Rob. Syst., 20 (8), pp. 477–499.

[CrossRef]Milenkovic, P., 2010, “Mobility of Single-Loop Kinematic Mechanisms Under Differential Displacement,” ASME J. Mech. Des., 132 (4), p. 041001.

[CrossRef]Lerbet, J., and Fayet, M., 2003, “Singularities of Mechanisms and the Degree of Mobility,” Proc. Inst. Mech. Eng., Part K: Journal of Multi-Body Dynamics, 217 (2), pp. 111–119.

[CrossRef]Waldron, K. J., 1969, “Symmetric Overconstrained Linkages,” ASME J. Eng. Ind., 91 , pp. 158–162.

Yu, H. -C., 1981, “The Bennett Linkage, Its Associated Tetrahedron and the Hyperboloid of Its Axes,” Mech. Mach. Theory, 16 (2), pp. 105–114.

[CrossRef]Bennett, G. T., 1914, “The Skew Isogram Mechanism,” Proc. London Math. Soc., s2-13 , pp. 151–173.

[CrossRef]Guest, S. D., and Fowler, P. W., 2005, “A Symmetry-Extended Mobility Rule,” Mech. Mach. Theory, 40 (9), pp. 1002–1014.

[CrossRef]Bottema, O., and Roth, B., 1990, "*Theoretical Kinematics*", North-Holland, Amsterdam.

Huang, C., 1997, “The Cylindroid Associated With Finite Motions of the Bennett Mechanism,” ASME J. Mech. Des., 119 (4), pp. 521–524.

[CrossRef]Baker, J. E., 2006, “Investigation of a Cylindroid Engendered by the Bennett Linkage,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 220 (7), pp. 945–951.

[CrossRef]Perez, A., and McCarthy, J. M., 2002, “Bennett’s Linkage and the Cylindroid,” Mech. Mach. Theory, 37 (11), pp. 1245–1260.

[CrossRef]Hunt, K. H., 1967, “Screw Axes and Mobility in Spatial Mechanisms via the Linear Complex,” J. Mech., 2 (3), pp. 307–327.

[CrossRef]Baker, J. E., 2005, “On Certain Surfaces and Curves Associated With the Bennett Linkage,” Proc. Inst. Mech. Eng., Part K: Journal of Multi-Body Dynamics, 219 (3), pp. 217–224.

[CrossRef]Baker, J. E., 2008, “A Kinematic Representation of Bennett’s Tetrahedron of Reference,” Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 222 (9), pp. 1821–1827.

[CrossRef]Delassus, E., 1922, “Les Chaînes Articulées Fermées Et Déformables à Quatre Membres,” Bull. Sci. Math., 46 , pp. 283–304.

Husty, M. L., Pfurner, M., and Schröcker, H. P., 2007, “Algebraic Methods in Mechanism Analysis and Synthesis,” Robotica, 25 (06), pp. 661–675.

[CrossRef]Pfurner, M., 2009, “A New Family of Overconstrained 6-R Mechanisms,” "*Proceedings of EUCOMES 08*", M.Ceccarelli, ed., Springer, New York, pp. 117–124.

Smith, D. R., and Lipkin, H., 1990, “Analysis of Fourth Order Manipulator Kinematics Using Conic Sections,” "*Proceedings of the 1990 IEEE International Conference on Robotics and Automation*", pp. 274–278.

Waldron, K. J., 1973, “A Study of Overconstrained Linkage Geometry by Solution of Closure Equations—Part I. Method of Study,” Mech. Mach. Theory, 8 , pp. 95–104.

[CrossRef]Waldron, K. J., 1973, “A Study of Overconstrained Linkage Geometry by Solution of Closure Equations—Part II. Four-Bar Linkages With Lower Pair Joints Other Than Screw Joints,” Mech. Mach. Theory, 8 (2), pp. 233–247.

[CrossRef]Jin, Q., and Yang, T., 2002, “Overconstraint Analysis on Spatial 6-Link Loops,” Mech. Mach. Theory, 37 (3), pp. 267–278.

[CrossRef]Dimentberg, F. M., 1959, *A General Method for the Investigation of Finite Displacements of Spatial Mechanisms and Certain Cases of Passive Joints*, Purdue Translation 436, Purdue University, Lafayette, IN.

Bil, T., 2010, “Mechanizm Bennetta w Geometrii Torusów,” Acta Mechanica Et Automatica, 4 (1), pp. 5–8, see

http://www.actawm.pb.edu.pl/.

Bil, T., 2010, “Geometry of a Mechanism With a Higher Pair in the Form of Two Elliptical Tori,” Mech. Mach. Theory, 45 (2), pp. 185–192.

[CrossRef]Fichter, E., and Hunt, K., 1975, “The Fecund Torus, Its Bitangent-Circles and Derived Linkages,” Mech. Mach. Theory, 10 (2–3), pp. 167–176.

[CrossRef]Alizade, R., Selvi, O., and Gezgin, E., 2010, “Structural Design of Parallel Manipulators With General Constraint One,” Mech. Mach. Theory, 45 (1), pp. 1–14.

[CrossRef]Hunt, K. H., 1973, “Constant-Velocity Shaft Couplings: A General Theory,” ASME J. Eng. Ind., 95 , pp. 455–464.

[CrossRef]Milenkovic, P., 2009, “Triangle Pseudocongruence in Constraint Singularity of Constant-Velocity Couplings,” ASME J. Mech. Rob., 1 (2), p. 021006.

Myard, F. E., 1933, “Theorie Generale Des Joints De Transmission De Rotation-a Couples d’Emboitement,” Le Génie Civil, 102 , pp. 345–348.

Milenkovic, V., 1977, “A New Constant Velocity Coupling,” ASME J. Eng. Ind., 99 , pp. 367–374.

[CrossRef]Bix, R., 2006, "*Conics and Cubics: A Concrete Introduction to Algebraic Curves*", Springer, New York.

Graustein, W. C., 1930, "*Introduction to Higher Geometry*", Macmillan, New York.

Farin, G. E., and Hansford, D., 1998, "*The Geometry Toolbox for Graphics and Modeling*", AK Peters, Natick, MA.

Beggs, J. S., 1966, "*Advanced Mechanism*", Macmillan, New York.

Woo, L., and Freudenstein, F., 1970, “Application of Line Geometry to Theoretical Kinematics and the Kinematic Analysis of Mechanical Systems,” J. Mech., 5 , pp. 417–460.

[CrossRef]Muller, A., 2002, “Higher Order Local Analysis of Singularities in Parallel Mechanisms,” ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference , New York, ASME Paper No. DETC2002/MECH-34258, pp. 515–522.

Eisenhart, L. P., 1918, “Surfaces Which Can be Generated in More Than One Way by the Motion of an Invariable Curve,” Ann. Math., 19 (3), pp. 217–230.

[CrossRef]Baker, J. E., 2001, “The Axodes of the Bennett Linkage,” Mech. Mach. Theory, 36 (1), pp. 105–116.

[CrossRef]