Zhu, S. J., Huang, Z., and Ding, H. F., 2007, “Forward/Reverse Velocity and Acceleration Analysis for a Class of Lower-Mobility Parallel Mechanism,” ASME J. Mech. Des., 129 (4), pp. 390–396.
[CrossRef]Joshi, S., and Tsai, L. W., 2002, “Jacobian Analysis of Limited-DOF Parallel Manipulators,” ASME J. Mech. Des., 124 (2), pp. 254–258.
[CrossRef]Huang, T., Liu, H., and Chetwynd, D. G., “Generalized Jacobian Analysis of Lower Mobility Manipulators,” Mech. Mach. Theory (to be published).
Tsai, L. -W., 2000, “Solving the Inverse Dynamics of a Stewart-Gough Manipulator by the Principle of Virtual Work,” ASME J. Mech. Des., 122 (3), pp. 3–9.
[CrossRef]Khalil, W., and Guegan, S., 2004, “Inverse and Direct Dynamic Modeling of Gough–Stewart Robots,” IEEE Transactions on Robotics, 20 (4), pp. 754–761.
[CrossRef]Li, M., Huang, T., Mei, J. P., Zhao, X. M., Chetwynd, D. G., and Hu, S. J., 2005, “Dynamic Formulation and Performance Comparison of the 3-DOF Modules of Two Reconfigurable PKMs—The Tricept and the TriVariant,” ASME J. Mech. Des., 127 (6), pp. 1129–1136.
[CrossRef]Callegari, M., Palpacelli, M. -C., and Principi, M., 2006, “Dynamics Modeling and Control of the 3-RCC Translational Platform,” Mechatronics, 16 , pp. 589–605.
[CrossRef]Staicu, S., and Zhang, D., 2008, “A Novel Dynamic Modelling Approach for Parallel Mechanisms Analysis,” Rob. Comput.-Integr. Manufact., 24 , pp. 167–172.
[CrossRef]Staicu, S., 2009, “Inverse Dynamics of the 3-PRR Planar Parallel Robot,” Robot. Auton. Syst., 57 , pp. 556–563.
[CrossRef]Staicu, S., Liu, X. -J., and Li, J., 2009, “Explicit Dynamics Equations of the Constrained Robotic Systems,” Nonlinear Dyn., 58 (1–2), pp. 217–235.
[CrossRef]Thomas, M., and Twsar, D., 1982, “Dynamic Modeling of Serial Manipulator Arms,” ASME J. Mech. Des., 104 (9), pp. 218–228.
[CrossRef]Huang, Z., 1985, “Modeling Formulation of 6-DOF Multi-Loop Parallel Mechanisms,” Proceedings of the Fourth IFToMM International Symposium on Linkage and Computer Aided Design Methods, II-1 , pp. 155–162.
Huang, Z., 1985, “Modeling Formulation of 6-DOF Multi-Loop Parallel Mechanisms,” Proceedings of the 4th IFToMM International Symposium on Linkage and Computer Aided Design Methods, II-1 , pp. 163–170.
Zhu, S. J., Huang, Z., and Guo, X. J., 2005, “Forward/Reverse Velocity and Acceleration Analyses for a Class of Lower-Mobility Parallel Mechanisms,” ASME , pp. 949–955.
Huang, Z., Zhao, Y. S., and Zhao, T. S., 2006, "The Advanced Spatial Mechanism", The High Education, Beijing.
Fang, Y., and Huang, Z., 1997, “Kinematics of a Three-Degree-Of-Freedom In-Parallel Actuated Manipulator Mechanism,” Mech. Mach. Theory, 32 (7), pp. 789–796.
[CrossRef]Lu, Y., and Shi, Y., 2009, “Kinematic Analysis of Limited-DOF Parallel Manipulators Based on Translational/Rotational Jacobian and Hessian Matrices,” Robotica, 27 (7), pp. 971–980.
[CrossRef]Lu, Y., Shi, Y., and Hu, B., 2008, “Kinematic Analysis of Two Novel 3UPPU I and 3UPU II PKMs,” Robot. Auton. Syst., 56 , pp. 296–305.
[CrossRef]Lu, Y., and Hu, B., 2007, “Analyzing Kinematics and Solving Active/Constrained Forces of a 3SPU+UPR Parallel Manipulator,” Mech. Mach. Theory, 42 (10), pp. 1298–1313.
[CrossRef]Lu, Y., and Hu, B., 2007, “Unified Solving Jacobian/Hessian Matrices of Some Parallel Manipulators With n SPS Active Legs and a Passive Constrained Leg,” ASME J. Mech. Des., 129 (11), pp. 1161–1169.
[CrossRef]Lu, Y., and Hu, B., 2008, “Unification and Simplification of Velocity/Acceleration of Limited-DOF Parallel Manipulators With Linear Active Legs,” Mech. Mach. Theory, 43 (9), pp. 1112–1128.
[CrossRef]Hunt, K. H., 1978, "Kinematic Geometry of Mechanisms", Oxford University Press, Oxford.
Mohamed, M. G., and Duffy, J., 1985, “A Direct Determination of the Instantaneous Kinematics of Fully Parallel Robot Manipulators,” ASME J. Mech., Transm., Autom. Des., 107 (2), pp. 226–229.
Kumar, V., 1992, “Instantaneous Kinematics of Parallel-Chain Robotic Mechanisms,” ASME J. Mech. Des., 114 (9), pp. 349–358.
[CrossRef]Ling, S. -H., and Huang, M. Z., 1995, “Kinestatic Analysis of General Parallel Manipulators,” ASME J. Mech. Des., 117 (12), pp. 601–606.
[CrossRef]Bonev, I. A., Zlatanov, D., and Gosselin, C. M., 2003, “Singularity Analysis of 3-DOF Planar Parallel Mechanisms via Screw Theory,” ASME J. Mech. Des., 125 (3), pp. 573–581.
[CrossRef]Fang, Y., and Tsai, L. -W., 2003, “Inverse Velocity and Singularity Analysis of Low-DOF Serial Manipulators,” J. Robotic Syst., 20 (4), pp. 177–188.
[CrossRef]Zoppi, M., Zlatanov, D., and Molfino, R., 2006, “On the Velocity Analysis of Interconnected Chains Mechanisms,” Mech. Mach. Theory, 41 (11), pp. 1346–1358.
[CrossRef]Sugimoto, K., 1990, “Existence Criteria for Overconstrained Mechanisms: An Extension of Motor Algebra,” ASME J. Mech. Des., 112 (3), pp. 295–298.
[CrossRef]Brand, L., 1947, "Vector and Tensor Analysis", Wiley, New York.
Rico, J. M., and Duffy, J., 1996, “An Application of Screw Algebra to the Acceleration Analysis of Serial Chains,” Mech. Mach. Theory, 31 (4), pp. 445–457.
[CrossRef]Rico, J. M., and Duffy, J., 2000, “Forward and Inverse Acceleration Analysis of In-Parallel Manipulator,” ASME J. Mech. Des., 122 (9), pp. 1161–1169.
Gallardo, J., Rico, J. M., Frisoli, A., Checcacci, D., and Bergamasco, M., 2003, “Dynamics of Parallel Manipulators by Means of Screw Theory,” Mech. Mach. Theory, 38 (11), pp. 1113–1131.
[CrossRef]Gallardo, J., Rico, J. M., and Alici, G., 2006, “Kinematics and Singularity Analyses of a 4-DOF Parallel Manipulator Using Screw Theory,” Mech. Mach. Theory, 41 (9), pp. 1113–1131.
Crane, C. D., and Duffy, J., 2003, “A Dynamic Analysis of a Spatial Manipulator to Determine the Payload Weight,” J. Robotic Syst., 90 (7), pp. 355–371.
[CrossRef]Murray, R., Li, Z. X., and Sastry, S., 1994, "A Mathematical Introduction to Robotic Manipulation", CRC, Boca Raton, FL.
Wahl, J., 2002, “Articulated Tool Head,” U.S. Patent No. 6,431,802.
Angeles, J., 2003, "
Fundamentals of Robotic Mechanical Systems: Theory, Methods, and Algorithms", 3rd ed., Springer-Verlag, New York.
[CrossRef]