To solve the velocity and acceleration of legs with different structures is a fundamental and challenging issue for dynamics analysis of parallel manipulators (PMs). In this paper, the kinematics of linear legs with different structures for limited-degree of freedom (DOF) PMs is studied. First, based on kinematics/statics of general limited-DOF PM, the formulas are derived for solving the angular velocity/acceleration of some linear legs with different structures. Second, the velocity and acceleration of the piston/cylinder in the legs are represented by velocity and acceleration of platform in PM. Finally, the solving procedures are illustrated by applying this approach to a 4DOF PM.