Dai,
J. S.
, and
Jones,
J. R.
, 2002, “
Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent,” J. Mech. Eng. Sci.,
216(10), pp. 959–970.

[CrossRef]
Liu,
H.
, and
Dai,
J. S.
, 2002, “
Carton Manipulation Analysis Using Configuration Transformation,” J. Mech. Eng. Sci.,
216(5), pp. 543–555.

[CrossRef]
Balkcom,
D. J.
, and
Mason,
M. T.
, 2008, “
Robotic Origami Folding,” Int. J. Rob. Res.,
27(5), pp. 613–627.

[CrossRef]
Resch,
R.
, and
Christiansen,
H.
, 1970, “
The Design and Analysis of Kinematic Folded Plate Systems,” IASS Symposium on Folded Plates and Prismatic Structures, Vienna, Sept.–Oct.

Miura,
K.
, 1970, “
Proposition of Pseudo-Cylindrical Concave Polyhedral Shells,” IASS Symposium on Folded Plates and Prismatic Structures, Vienna, Sept.–Oct., pp. 141–163.

Yao,
W.
, and
Dai,
J. S.
, 2008, “
Dexterous Manipulation of Origami Cartons With Robotic Fingers Based on the Interactive Configuration Space,” ASME J. Mech. Des.,
130(2), p. 22303.

[CrossRef]
Chen,
Y.
,
Peng,
R.
, and
You,
Z.
, 2015, “
Origami of Thick Panels,” Science,
349(6246), pp. 396–400.

[CrossRef] [PubMed]
Resch,
R.
,
Barnhill,
R. E.
, and
Riesenfeld,
R. F.
, 1974, “
The Space Curve as a Folded Edge,” Computer-Aided Geometric Design,
Academic Press, Dordrecht, The Netherlands, pp. 255–258.

Xu,
H. Y.
, and
Dai,
J. S.
, 2002, “
Three-Dimensional Implicit Curve Interpolation,” Int. J. Adv. Manuf. Technol.,
19(5), pp. 325–329.

[CrossRef]
Huffman,
D. A.
, 1976, “
Curvature and Creases: A Primer on Paper,” IEEE Trans. Comput.,
C-25(10), pp. 1010–1019.

[CrossRef]
Demaine,
E.
,
Demaine,
M.
,
Koschitz,
D.
, and
Tachi,
T.
, 2015, “
A Review on Curved Creases in Art, Design and Mathematics,” Symmetry: Culture Sci.,
26(2), pp. 145–161.

http://martindemaine.org/papers/CurvedCrease_IASS2011/paper.pdf
Fuchs,
D.
, and
Tabachnikov,
S.
, 1999, “
More on Paperfolding,” Am. Math. Mon.,
106(1), pp. 27–35.

[CrossRef]
Redont,
P.
, 1989, “
Representation and Deformation of Developable Surfaces,” Comput. Aided Des.,
21(1), pp. 13–20.

[CrossRef]
Bo,
P.
, and
Wang,
W.
, 2007, “
Geodesic-Controlled Developable Surfaces for Modeling Paper Bending,” Comp. Graph. Forum,
26(3), pp. 365–374.

[CrossRef]
Demaine,
E.
,
Demaine,
M.
,
Huffman,
D.
,
Koschitz,
D.
, and
Tachi,
T.
, 2016, “
Characterization of Curved Creases and Rulings: Design and Analysis of Lens Tessellations,” Origami6,
American Mathematical Society, Robert J. Lang, and Patsy Wang-Iverson, eds., Tokyo, Japan, pp. 209–230.

Geretschlaeger,
R.
, 2009, “
Folding Curves,” Origami4,
A K Peters, Natick, MA, pp. 151–164.

Kilian,
M.
,
Floery,
S.
,
Mitra,
N. J.
, and
Pottmann,
H.
, 2008, “
Curved Folding,” ACM Trans. Graph.,
27(3), pp. 1–9.

[CrossRef]
Kergosien,
Y.
,
Gotoda,
H.
, and
Kunii,
T.
, 1994, “
Bending and Creasing Virtual Paper,” IEEE Comput. Graph. Appl.,
14(1), pp. 40–48.

[CrossRef]
Wang,
F.
,
Gong,
H.
,
Chen,
X.
, and
Chena,
C. Q.
, 2016, “
Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-Based Cylindrical Structures,” Sci. Rep.,
6, p. 33312.

[CrossRef] [PubMed]
Dudte,
L. H.
,
Vouga,
E.
,
Tachi,
T.
, and
Mahadevan,
L.
, 2016, “
Programming Curvature Using Origami Tessellations,” Nat. Mater.,
15(5), pp. 583–588.

[CrossRef] [PubMed]
Nelson,
T. G.
,
Lang,
R. J.
,
Pehrson,
N. A.
,
Magleby,
S. P.
, and
Howell,
L. L.
, 2016, “
Facilitating Deployable Mechanisms and Structures Via Developable Lamina Emergent Arrays,” ASME J. Mech. Rob.,
8(3), p. 031006.

[CrossRef]
Nelson,
T. G.
,
Lang,
R. J.
,
Magleby,
S. P.
, and
Howell,
L. L.
, 2016, “
Curved-Folding-Inspired Deployable Compliant Rolling-Contact Element (D-CORE),” Mech. Mach. Theory,
96, pp. 225–238.

[CrossRef]
Mentrasti,
L.
,
Cannella,
F.
,
Pupilli,
M.
, and
Dai,
J. S.
, 2013, “
Large Bending Behaviour of Creased Paperboard—I: Experimental Investigations,” Int. J. Solids Struct.,
50, pp. 20–21.

Mentrasti,
L.
,
Cannella,
F.
,
Pupilli,
M.
, and
Dai,
J. S.
, 2013, “
Large Bending Behaviour of Creased Paperboard—II: Structural Analysis,” Int. J. Solids Struct.,
50, pp. 20–21.

Desbrun,
M.
,
Polthier,
K.
, and
Schöder,
P.
, 2005, “
Discrete Differential Geometry,” ACM SIGGRAPH' 05, Los Angeles, pp. 263–324.

Bobenko,
A.
, and
Pinkall,
U.
, 1990, “
Discrete Surfaces With Constant Negative Gaussian Curvature and the Hirota Equation,” J. Differ. Geom.,
43(3), pp. 527–611.

[CrossRef]
Carroll,
D.
,
Hankins,
E.
,
Kose,
E.
, and
Sterling,
I.
, 2014, A Survey of the Differential Geometry of Discrete Curves, Vol.
36,
Springer Science & Business Media, New York, pp. 28–35.

Hoffman,
T.
, 2000, “
Discrete Curves and Surfaces,” Ph.D. thesis, Technische Universität Berlin, Berlin.

Doliwa,
A.
, and
Santini,
P.
, 1995, “
Integrable Dynamics of a Discrete Curve and the Ablowitz-Ladik Hierarchy,” J. Math. Phys.,
36(3), pp. 1259–1273.

[CrossRef]
Bodduluri,
R. M. C.
, and
Ravani,
B.
, 1993, “
Design of Developable Surfaces Using Duality Between Plane and Point Geometries,” Comput.-Aided Des.,
25(10), pp. 621–632.

[CrossRef]
Pottmann,
H.
, and
Farin,
G.
, 1995, “
Developable Rational Bézier and B-Spline Surfaces,” Comput. Aided Geom. Des.,
12(5), pp. 513–531.

[CrossRef]
Bennis,
C.
,
Vezien,
J. M.
, and
Iglesias,
G.
, 1991, “
Piecewise Flattening for Non-Distorted Texture Mapping,” 18th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '91), New York, July, pp. 237–246.

Wang,
D. L.
, and
Wang,
W.
, 2015, Kinematic Differential Geometry and Saddle Synthesis of Linkages,
Wiley, Singapore.

Lang,
R. J.
, 2018, Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami,
A K Peters/CRC Press, Natick, MA.

Evans,
T. A.
,
Lang,
R. J.
,
Magleby,
S. P.
, and
Howell,
L. L.
, 2015, “
Rigidly Foldable Origami Gadgets and Tessellations,” R. Soc. Open Sci.,
2(9), p. 150067.

[CrossRef] [PubMed]
Tachi,
T.
, 2009, “
Generalization of Rigid Foldable Quadrilateral Mesh Origami,” Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures, International Association for Shell and Spatial Structures (IASS) Symposium, Valencia, Spain, Sept. 28–Oct. 2, pp. 173–179.

Guven,
J.
, and
Müller,
M. M.
, 2008, “
How Paper Folds: Bending With Local Constraints,” J. Phys. A: Math. Theor.,
41(5), p. 055203.

[CrossRef]
Zhang,
K. T.
,
Qiu,
C.
, and
Dai,
J. S.
, 2016, “
An Extensible Continuum Robot With Integrated Origami Parallel Modules,” ASME J. Mech. Rob.,
8(3), p. 031010.

[CrossRef]
You,
Z.
, and
Pellegrino,
S.
, 1997, “
Foldable Bar Structures,” Int. J. Solid Struct.,
34(15), pp. 1825–1847.

[CrossRef]
Zhang,
K. T.
, and
Dai,
J. S.
, 2013, “
Classification of Origami-Enabled Foldable Linkages and Emerging Applications,” ASME Paper No. DETC2013-12227.