Denavit,
J.
, and
Hartenberg,
R. S.
, 1955, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices,” ASME J. Appl. Mech.,
22, pp. 215–221.

Adorno,
B. V.
, and
Fraisse,
P.
, 2017, “
The Cross-Motion Invariant Group and Its Application to Kinematics,” IMA J. Math. Control Inf.,
34(4), pp. 1359–1378.

Cayley,
A.
, 1843, “
On the Motion of Rotation of a Solid Body,” Cambridge Math. J.,
3, pp. 224–232.

Euler,
L.
, 1758, “
Du Mouvement de Rotation des Corps Solides Autour d'un Axe Variable,” Mémoires de l'Académie des Sciences de Berlin,
14, pp. 154–193.

Rodrigues,
O.
, 1840, “
Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et de la variation des coordonnées provenant de ces déplacements considérés independamment des causes qui peuvent les produire,” J. Math. Pures Appl.,
5, pp. 380–440.

Blaschke,
W.
, and
Müller,
H. R.
, 1956, Ebene Kinematik,
Verlag von R. Oldenbourg,
Munich, Germany.

Chasles,
M.
, 1830, “
Note sur les propriétés générales du système de deux corps semblables entre eux et placés d'une manière quelconque dans l'espace; et sur le déplacement fini ou infiniment petit d'un corps solide libre,” Férussac, Bull. Sci. Math.,
14, pp. 321–326.

Altmann,
S. L.
, 2005, Rotations, Quaternions, and Double Groups,
Dover, Mineola, NY.

Bottema,
O.
, and
Roth,
B.
, 1979, Theoretical Kinematics,
Dover, Mineola, NY.

Angeles,
J.
, 1988, Rational Kinematics,
Springer-Verlag,
New York.

[CrossRef]
Herve,
J. M.
, 1999, “
The Lie Group of Rigid Body Displacements, a Fundamental Tool for Machine Design,” Mech. Mach. Theory,
34(5), pp. 719–730.

[CrossRef]
Karger,
A.
, and
Novák,
J.
, 1985, Space Kinematics and Lie Groups,
Gordon and Breach Science Publishers,
New York.

McCarthy,
J. M.
, 1990, Introduction to Theoretical Kinematics,
MIT Press, Cambridge, MA.

Murray,
R. M.
,
Li,
Z.
, and
Sastry,
S. S.
, 1994, A Mathematical Introduction to Robotic Manipulation,
CRC Press,
Boca Raton, FL.

Ravani,
B.
, and
Roth,
B.
, 1983, “
Motion Synthesis Using Kinematic Mapping,” ASME J. Mech. Transm. Autom. Des.,
105(3), pp. 460–467.

[CrossRef]
Selig,
J. M.
, 2005, Geometrical Fundamentals of Robotics, 2nd ed.,
Springer,
New York.

Ball,
R. S.
, 1900, A Treatise on the Theory of Screws,
Cambridge University Press, Cambridge, UK.

Crane
,
C. D., III
., and
Duffy,
J.
, 2008, Kinematic Analysis of Robot Manipulators by Carl D. Crane III (2008-01-28)1623,
Cambridge University Press, Cambridge, UK.

Davidson,
J. K.
, and
Hunt,
K. H.
, 2004, Robots and Screw Theory: Applications of Kinematics and Statics to Robotics,
Oxford University Press, Oxford, UK.

Duffy,
J.
,
Hunt,
H. E. M.
, and
Lipkin,
H.
, eds., 2000, Proceedings of a Symposium Commemorating the Legacy, Works, and Life of Sir Robert S. Ball,
Cambridge University Press, Cambridge, UK.

Lipkin,
H.
, 1985, “Geometry and Mappings of Screws With Applications to the Hybrid Control of Robotic Manipulators,” Ph.D. thesis, University of Florida, Gainesville, FL.

Rooney,
J.
, 1978, “
A Comparison of Representations of General Spatial Screw Displacements,” Environ. Plann. B,
5(1), pp. 45–88.

[CrossRef]
Chirikjian,
G. S.
, and
Kyatkin,
A. B.
, 2016, Harmonic Analysis for Engineers and Applied Scientists,
Dover,
Mineola, NY.

Stramigioli,
S.
, 2001, “
Nonintrinsicity of References in Rigid-Body Motions,” ASME J. Appl. Mech.,
68(6), pp. 929–936.

[CrossRef]
Legnani,
G.
,
Casolo,
F.
,
Righettini,
P.
, and
Zappa,
B.
, 1996, “
A Homogeneous Matrix Approach to 3D Kinematics and Dynamics—I: Theory,” Mech. Mach. Theory,
31(5), pp. 573–587.

[CrossRef]
Selig,
J.
, 2006, “
Active Versus Passive Transformations in Robotics,” Rob. Autom. Mag.,
13(1), pp. 79–84.

[CrossRef]
Fanghella,
P.
, and
Galletti,
C.
, 1995, “
Metric Relations and Displacement Groups in Mechanism and Robot Kinematic,” ASME J. Mech. Des.,
117(3), pp. 470–478.

[CrossRef]
Kazerounian,
K.
, and
Rastegar,
J.
, 1992, “Object Norms: A Class of Coordinate and Metric Independent Norms for Displacement,” Flexible Mech., Dynam. Anal.,
47, pp. 271–275.

Martinez,
J. M. R.
, and
Duffy,
J.
, 1995, “
On the Metrics of Rigid Body Displacement for Infinite and Finite Bodies,” ASME J. Mech. Des.,
117(1), pp. 41–47.

[CrossRef]
Park,
F. C.
, 1995, “
Distance Metrics on the Rigid-Body Motions With Applications to Mechanism Design,” ASME J. Mech. Des.,
117(1), pp. 48–54.

[CrossRef]
Larochelle,
P. M.
,
Murray,
A. P.
, and
Angeles,
J.
, 2007, “
A Distance Metric for Finite Sets of Rigid-Body Displacements Via the Polar Decomposition,” ASME J. Mech. Des.,
129(8), pp. 883–886.

[CrossRef]
Lin,
Q.
, and
Burdick,
J. W.
, 2000, “
Objective and Frame-Invariant Kinematic Metric Functions for Rigid Bodies,” Int. J. Rob. Res.,
19(6), pp. 612–625.

[CrossRef]
Amato,
N. M.
,
Bayazit,
O. B.
,
Dale,
L. K.
,
Jones,
C.
, and
Vallejo,
D.
, 1998, “
Choosing Good Distance Metrics and Local Planners for Probabilistic Roadmap Methods,” IEEE International Conference on Robotics and Automation (ICRA'98), Leuven, Belgium, May 20, pp. 630–637.

Chirikjian,
G. S.
, 2015, “
Partial Bi-Invariance of SE(3) Metrics,” ASME J. Comput. Inf. Sci. Eng.,
15(1), p. 011008.

[CrossRef]